scispace - formally typeset
Search or ask a question
Author

Michael Stadermann

Bio: Michael Stadermann is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: National Ignition Facility & Inertial confinement fusion. The author has an hindex of 41, co-authored 152 publications receiving 7998 citations. Previous affiliations of Michael Stadermann include University of North Carolina at Chapel Hill & Stanford University.


Papers
More filters
Journal ArticleDOI
19 May 2006-Science
TL;DR: Gas and water flow measurements through microfabricated membranes in which aligned carbon nanotubes with diameters of less than 2 nanometers serve as pores enable fundamental studies of mass transport in confined environments, as well as more energy-efficient nanoscale filtration.
Abstract: We report gas and water flow measurements through microfabricated membranes in which aligned carbon nanotubes with diameters of less than 2 nanometers serve as pores. The measured gas flow exceeds predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow exceeds values calculated from continuum hydrodynamics models by more than three orders of magnitude and is comparable to flow rates extrapolated from molecular dynamics simulations. The gas and water permeabilities of these nanotube-based membranes are several orders of magnitude higher than those of commercial polycarbonate membranes, despite having pore sizes an order of magnitude smaller. These membranes enable fundamental studies of mass transport in confined environments, as well as more energy-efficient nanoscale filtration.

2,637 citations

Journal ArticleDOI
TL;DR: It is shown that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions, which strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions.
Abstract: Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important.

637 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of carbon aerogels with hierarchical porosities for energy applications, including carbon nanotube and graphene composite carbon aeroglobels, as well as their functionalization by surface engineering are discussed.
Abstract: Carbon aerogels are a unique class of high-surface-area materials derived by sol–gel chemistry. Their high mass-specific surface area and electrical conductivity, environmental compatibility and chemical inertness make them very promising materials for many energy related applications, specifically in view of recent developments in controlling their morphology. In this perspective we will review the synthesis of monolithic resorcinol–formaldehyde based carbon aerogels with hierarchical porosities for energy applications, including carbon nanotube and graphene composite carbon aerogels, as well as their functionalization by surface engineering. Applications that we will discuss include hydrogen and electrical energy storage, desalination and catalysis.

576 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a flow-through electrode (FTE) capacitive desalination, where the feed water flows directly through electrodes along the primary electric field direction, which enables significant reduction in desalization time and can desalinate higher salinity feeds per charge.
Abstract: Capacitive desalination (CD) is a promising desalination technique as, relative to reverse osmosis (RO), it requires no membrane components, can operate at low (sub-osmotic) pressures, and can potentially utilize less energy for brackish water desalination. In a typical CD cell, the feed water flows through the separator layer between two electrically charged, nanoporous carbon electrodes. This architecture results in significant performance limitations, including an inability to easily (in a single charge) desalinate moderate brackish water feeds and slow, diffusion-limited desalination. We here describe an alternative architecture, where the feed flows directly through electrodes along the primary electric field direction, which we term flow-through electrode (FTE) capacitive desalination. Using macroscopic porous electrode theory, we show that FTE CD enables significant reductions in desalination time and can desalinate higher salinity feeds per charge. We then demonstrate these benefits using a custom-built FTE CD cell containing novel hierarchical carbon aerogel monoliths as an electrode material. The pore structure of our electrodes includes both micron-scale and sub-10 nm pores, allowing our electrodes to exhibit both low flow resistance and very high specific capacitance (>100 F g−1). Our cell demonstrates feed concentration reductions of up to 70 mM NaCl per charge and a mean sorption rate of nearly 1 mg NaCl per g aerogel per min, 4 to 10 times higher than that demonstrated by the typical CD cell architecture. We also show that, as predicted by our model, our cell desalinates the feed at the cell's RC timescale rather than the significantly longer diffusive timescale characteristic of typical CD cells.

350 citations

Journal ArticleDOI
TL;DR: The synthesis of a three-dimensional macroassembly of graphene sheets with electrical conductivity and Young's modulus orders of magnitude higher than those previously reported, super-compressive deformation behavior, and surface areas approaching theoretically maximum values is reported.

239 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
20 Mar 2008-Nature
TL;DR: Some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water are highlighted.
Abstract: One of the most pervasive problems afflicting people throughout the world is inadequate access to clean water and sanitation. Problems with water are expected to grow worse in the coming decades, with water scarcity occurring globally, even in regions currently considered water-rich. Addressing these problems calls out for a tremendous amount of research to be conducted to identify robust new methods of purifying water at lower cost and with less energy, while at the same time minimizing the use of chemicals and impact on the environment. Here we highlight some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water.

6,967 citations

Journal ArticleDOI
05 Aug 2011-Science
TL;DR: The possible reductions in energy demand by state-of-the-art seawater Desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages are reviewed.
Abstract: In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages.

4,840 citations

Journal ArticleDOI
01 Feb 2013-Science
TL;DR: Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Abstract: Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

4,596 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the current understanding of carbon nanotubes and CNT/polymer nanocomposites with two particular topics: (i) the principles and techniques for CNT dispersion and functionalization and (ii) the effects of CNT-based functionalization on the properties of polymers.
Abstract: Carbon nanotubes (CNTs) hold the promise of delivering exceptional mechanical properties and multi-functional characteristics. Ever-increasing interest in applying CNTs in many different fields has led to continued efforts to develop dispersion and functionalization techniques. To employ CNTs as effective reinforcement in polymer nanocomposites, proper dispersion and appropriate interfacial adhesion between the CNTs and polymer matrix have to be guaranteed. This paper reviews the current understanding of CNTs and CNT/polymer nanocomposites with two particular topics: (i) the principles and techniques for CNT dispersion and functionalization and (ii) the effects of CNT dispersion and functionalization on the properties of CNT/polymer nanocomposites. The fabrication techniques and potential applications of CNT/polymer nanocomposites are also highlighted.

2,849 citations