scispace - formally typeset
Search or ask a question
Author

Michael T. Goodrich

Bio: Michael T. Goodrich is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Planar graph & Parallel algorithm. The author has an hindex of 61, co-authored 430 publications receiving 14045 citations. Previous affiliations of Michael T. Goodrich include New York University & Technion – Israel Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Improvements in parallel divide-and-conquer techniques are presented, resulting in improved parallel algorithms for a number of problems, including intersection detection, trapezoidal decomposition, and planar point location.
Abstract: Techniques for parallel divide-and-conquer are presented, resulting in improved parallel algorithms for a number of problems. The problems for which improved algorithms are given include segment intersection detection, trapezoidal decomposition, and planar point location. Efficient parallel algorithms are algo given for fractional cascading, three-dimensional maxima, two-set dominance counting, and visibility from a point. All of the algorithms presented run in $O(\log n)$ time with either a linear or a sublinear number of processors in the CREW PRAM model.

168 citations

Journal ArticleDOI
TL;DR: Upper bounds are established on the combinatorial complexity of this subproblem in model-based computer vision, when the sets A and B contain points, line segments, or (filled-in) polygons.
Abstract: Given two planar sets A and B, we examine the problem of determining the smallest ϵ such that there is a Euclidean motion (rotation and translation) of A that brings each member of A within distance ϵ of some member of B. We establish upper bounds on the combinatorial complexity of this subproblem in model-based computer vision, when the sets A and B contain points, line segments, or (filled-in) polygons. We also show how to use our methods to substantially improve on existing algorithms for finding the minimum Hausdorff distance under Euclidean motion.

166 citations

Book
09 Sep 2015
TL;DR: In this article, the authors present techniques for parallel divide-and-conquer, resulting in improved parallel algorithms for a number of problems including intersection detection, trapezoidal decomposition, and planar point location.
Abstract: We present techniques for parallel divide-and-conquer, resulting in improved parallel algorithms for a number of problems. The problems for which we give improved algorithms include intersection detection, trapezoidal decomposition (hence, polygon triangulation), and planar point location (hence, Voronoi diagram construction). We also give efficient parallel algorithms for fractional cascading, 3-dimensional maxima, 2-set dominance counting, and visibility from a point. All of our algorithms run in O(log n) time with either a linear or sub-linear number of processors in the CREW PRAM model.

162 citations

Book ChapterDOI
05 Dec 2011
TL;DR: In this paper, the authors study the MapReduce framework from an algorithmic standpoint, providing a generalization of the previous algorithmic models for mapReduce, and present optimal solutions for the fundamental problems of all-prefix-sums, sorting and multi-searching.
Abstract: We study the MapReduce framework from an algorithmic standpoint, providing a generalization of the previous algorithmic models for MapReduce. We present optimal solutions for the fundamental problems of all-prefix-sums, sorting and multi-searching. Additionally, we design optimal simulations of the the well-established PRAM and BSP models in MapReduce, immediately resulting in optimal solutions to the problems of computing fixed-dimensional linear programming and 2-D and 3-D convex hulls.

161 citations

Proceedings ArticleDOI
21 Oct 2011
TL;DR: This paper shows how to deamortize oblivious RAM simulations, so that each access takes a worst-case bounded amount of time.
Abstract: Oblivious RAM simulation is a method for achieving confidentiality and privacy in cloud computing environments. It involves obscuring the access patterns to a remote storage so that others, including even the manager of that storage, cannot infer information about its contents. Existing solutions typically yield small amortized overheads for achieving this goal, but also yield huge variations in access times, depending on when they occur. In this paper, we show how to deamortize oblivious RAM simulations, so that each access takes a worst-case bounded amount of time.

157 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations

Journal ArticleDOI
TL;DR: This work presents a simple and efficient implementation of Lloyd's k-means clustering algorithm, which it calls the filtering algorithm, and establishes the practical efficiency of the algorithm's running time.
Abstract: In k-means clustering, we are given a set of n data points in d-dimensional space R/sup d/ and an integer k and the problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. A popular heuristic for k-means clustering is Lloyd's (1982) algorithm. We present a simple and efficient implementation of Lloyd's k-means clustering algorithm, which we call the filtering algorithm. This algorithm is easy to implement, requiring a kd-tree as the only major data structure. We establish the practical efficiency of the filtering algorithm in two ways. First, we present a data-sensitive analysis of the algorithm's running time, which shows that the algorithm runs faster as the separation between clusters increases. Second, we present a number of empirical studies both on synthetically generated data and on real data sets from applications in color quantization, data compression, and image segmentation.

5,288 citations