scispace - formally typeset
Search or ask a question
Author

Michael T. Goodrich

Bio: Michael T. Goodrich is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Planar graph & Parallel algorithm. The author has an hindex of 61, co-authored 430 publications receiving 14045 citations. Previous affiliations of Michael T. Goodrich include New York University & Technion – Israel Institute of Technology.


Papers
More filters
Book ChapterDOI
03 Sep 2016
TL;DR: This work characterizes the feasibility of graph watermarking in terms of keygen, marking, and identification functions defined over graph families with known distributions, and demonstrates the strength of this approach with exemplary watermarked schemes for two random graph models, the classic Erd\H{o}s-R\'{e}nyi model and a random power-law graph model, both of which are used to model real-world networks.
Abstract: We introduce models and algorithmic foundations for graph watermarking. Our approach is based on characterizing the feasibility of graph watermarking in terms of keygen, marking, and identification functions defined over graph families with known distributions. We demonstrate the strength of this approach with exemplary watermarking schemes for two random graph models, the classic Erdős-Renyi model and a random power-law graph model, both of which are used to model real-world networks.

13 citations

Proceedings Article
01 Jan 1993
TL;DR: New techniques for designing optimal algorithms for computational geometry problems that are too large to be solved in internal memory are given and these algorithms are optimal both in terms of I/O cost and internal computation.
Abstract: In this paper we give new techniques for designing e cient algorithms for computational geometry problems that are too large to be solved in internal memory. We use these techniques to develop optimal and practical algorithms for a number of important largescale problems. We discuss our algorithms primarily in the context of single processor/single disk machines, a domain in which they are not only the rst known optimal results but also of tremendous practical value. Our methods also produce the rst known optimal algorithms for a wide range of two-level and hierarchical multilevel memory models, including parallel models. The algorithms are optimal both in terms of I/O cost and internal computation.

13 citations

Posted Content
TL;DR: This work builds secure fingerprint alignment and matching protocols in both the two- party setting using garbled circuit evaluation and in the multi-party setting using secret sharing techniques, and designs a number of secure sub-protocols for complex operations such as sine, cosine, arctangent, square root, and selection.
Abstract: We present three private fingerprint alignment and matching protocols, based on what are considered to be the most precise and efficient fingerprint recognition algorithms, which use minutia points. Our protocols allow two or more honest-but-curious parties to compare their respective privately-held fingerprints in a secure way such that they each learn nothing more than an accurate score of how well the fingerprints match. To the best of our knowledge, this is the first time fingerprint alignment based on minutiae is considered in a secure computation framework. We build secure fingerprint alignment and matching protocols in both the two-party setting using garbled circuit evaluation and in the multi-party setting using secret sharing techniques. In addition to providing precise and efficient secure fingerprint alignment and matching, our contributions include the design of a number of secure sub-protocols for complex operations such as sine, cosine, arctangent, square root, and selection, which are likely to be of independent interest.

12 citations

Book ChapterDOI
11 Aug 1993
TL;DR: This work studies the problem of computing efficient strategies (“decision trees”) for probing an image and proves a hardness result and gives strategies that obtain decision trees whose height is within a log factor of optimal.
Abstract: A fundamental problem in model-based computer vision is that of identifying to which of a given set of concept classes of geometric models an observed model belongs. Considering a “probe” to be an oracle that tells whether or not the observed model is present at a given point in an image, we study the problem of computing efficient strategies (“decision trees”) for probing an image, with the goal to minimize the number of probes necessary (in the worst case) to determine in which class the observed model belongs. We prove a hardness result and give strategies that obtain decision trees whose height is within a log factor of optimal.

12 citations

Book ChapterDOI
TL;DR: An efficient implementation of the notarized federated identity management model based on the Secure Transaction Management System (STMS) is presented, which enables one to proactively prevent the leaking of secret identity information.
Abstract: We propose a notarized federated identity management model that supports efficient user authentication when providers are unknown to each other Our model introduces a notary service, owned by a trusted third-party, to dynamically notarize assertions generated by identity providers An additional feature of our model is the avoidance of direct communications between identity providers and service providers, which provides improved privacy protection for users We present an efficient implementation of our notarized federated identity management model based on the Secure Transaction Management System (STMS) We also give a practical solution for mitigating aspects of the identity theft problem and discuss its use in our notarized federated identity management model The unique feature of our cryptographic solution is that it enables one to proactively prevent the leaking of secret identity information

12 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations

Journal ArticleDOI
TL;DR: This work presents a simple and efficient implementation of Lloyd's k-means clustering algorithm, which it calls the filtering algorithm, and establishes the practical efficiency of the algorithm's running time.
Abstract: In k-means clustering, we are given a set of n data points in d-dimensional space R/sup d/ and an integer k and the problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. A popular heuristic for k-means clustering is Lloyd's (1982) algorithm. We present a simple and efficient implementation of Lloyd's k-means clustering algorithm, which we call the filtering algorithm. This algorithm is easy to implement, requiring a kd-tree as the only major data structure. We establish the practical efficiency of the filtering algorithm in two ways. First, we present a data-sensitive analysis of the algorithm's running time, which shows that the algorithm runs faster as the separation between clusters increases. Second, we present a number of empirical studies both on synthetically generated data and on real data sets from applications in color quantization, data compression, and image segmentation.

5,288 citations