scispace - formally typeset
Search or ask a question
Author

Michael T. Goodrich

Bio: Michael T. Goodrich is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Planar graph & Parallel algorithm. The author has an hindex of 61, co-authored 430 publications receiving 14045 citations. Previous affiliations of Michael T. Goodrich include New York University & Technion – Israel Institute of Technology.


Papers
More filters
Posted Content
TL;DR: In this article, the tracking paths problem is shown to be NP-hard and is known to be solvable in general, but its approximation ratio is unknown, and it is not known whether it can be approximated to within a factor of 1 + ϵ.
Abstract: Given an undirected graph, $G$, and vertices, $s$ and $t$ in $G$, the tracking paths problem is that of finding the smallest subset of vertices in $G$ whose intersection with any $s$-$t$ path results in a unique sequence. This problem is known to be NP-complete and has applications to animal migration tracking and detecting marathon course-cutting, but its approximability is largely unknown. In this paper, we address this latter issue, giving novel algorithms having approximation ratios of $(1+\epsilon)$, $O(\lg OPT)$ and $O(\lg n)$, for $H$-minor-free, general, and weighted graphs, respectively. We also give a linear kernel for $H$-minor-free graphs and make improvements to the quadratic kernel for general graphs.

2 citations

Posted Content
TL;DR: The priority range tree as discussed by the authors is a data structure that accommodates fast orthogonal range reporting queries on prioritized points, which is motivated by the Weber-Fechner Law, which states that humans perceive and interpret data on a logarithmic scale.
Abstract: We describe a data structure, called a priority range tree, which accommodates fast orthogonal range reporting queries on prioritized points. Let $S$ be a set of $n$ points in the plane, where each point $p$ in $S$ is assigned a weight $w(p)$ that is polynomial in $n$, and define the rank of $p$ to be $r(p)=\lfloor \log w(p) \rfloor$. Then the priority range tree can be used to report all points in a three- or four-sided query range $R$ with rank at least $\lfloor \log w \rfloor$ in time $O(\log W/w + k)$, and report $k$ highest-rank points in $R$ in time $O(\log\log n + \log W/w' + k)$, where $W=\sum_{p\in S}{w(p)}$, $w'$ is the smallest weight of any point reported, and $k$ is the output size. All times assume the standard RAM model of computation. If the query range of interest is three sided, then the priority range tree occupies $O(n)$ space, otherwise $O(n\log n)$ space is used to answer four-sided queries. These queries are motivated by the Weber--Fechner Law, which states that humans perceive and interpret data on a logarithmic scale.

2 citations

Journal ArticleDOI
01 May 1991
TL;DR: A local method for the computation of the intersections of plane algebraic curve segments, based upon an extension of methods for tracing along a curve, which will directly find only those intersections that lie on the segments.
Abstract: We present a local method for the computation of the intersections of plane algebraic curve segments. The conventional method of intersection is global, because it must first find all of the intersections between two curves before it can restrict the segments in question; hence, it cannot take advantage of situations dealing with the intersection of short-curve segments on complex curves. Our local method, on the other hand, will directly find only those intersections that lie on the segments, as it is based upon an extension of methods for tracing along a curve.

2 citations

Journal ArticleDOI
TL;DR: It is shown that the C-Planarity Testing problem admits a single-exponential single-parameter FPT (resp, XP) algorithm for embedded flat (resp., non-flat) clustered graphs, when parameterized by the carving-width of the dual graph of the input.
Abstract: For a clustered graph, i.e, a graph whose vertex set is recursively partitioned into clusters, the C-Planarity Testing problem asks whether it is possible to find a planar embedding of the graph and a representation of each cluster as a region homeomorphic to a closed disk such that (1) the subgraph induced by each cluster is drawn in the interior of the corresponding disk, (2) each edge intersects any disk at most once, and (3) the nesting between clusters is reflected by the representation, i.e., child clusters are properly contained in their parent cluster. The computational complexity of this problem, whose study has been central to the theory of graph visualization since its introduction in 1995 [Feng, Cohen, and Eades, Planarity for clustered graphs, ESA’95], has only been recently settled [Fulek and Toth, Atomic Embeddability, Clustered Planarity, and Thickenability, to appear at SODA’20]. Before such a breakthrough, the complexity question was still unsolved even when the graph has a prescribed planar embedding, i.e, for embedded clustered graphs. We show that the C-Planarity Testing problem admits a single-exponential single-parameter FPT (resp., XP) algorithm for embedded flat (resp., non-flat) clustered graphs, when parameterized by the carving-width of the dual graph of the input. These are the first FPT and XP algorithms for this long-standing open problem with respect to a single notable graph-width parameter. Moreover, the polynomial dependency of our FPT algorithm is smaller than the one of the algorithm by Fulek and Toth. In particular, our algorithm runs in quadratic time for flat instances of bounded treewidth and bounded face size. To further strengthen the relevance of this result, we show that an algorithm with running time O(r(n)) for flat instances whose underlying graph has pathwidth 1 would result in an algorithm with running time O(r(n)) for flat instances and with running time $$O(r(n^2) + n^2)$$ for general, possibly non-flat, instances.

2 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations

Journal ArticleDOI
TL;DR: This work presents a simple and efficient implementation of Lloyd's k-means clustering algorithm, which it calls the filtering algorithm, and establishes the practical efficiency of the algorithm's running time.
Abstract: In k-means clustering, we are given a set of n data points in d-dimensional space R/sup d/ and an integer k and the problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. A popular heuristic for k-means clustering is Lloyd's (1982) algorithm. We present a simple and efficient implementation of Lloyd's k-means clustering algorithm, which we call the filtering algorithm. This algorithm is easy to implement, requiring a kd-tree as the only major data structure. We establish the practical efficiency of the filtering algorithm in two ways. First, we present a data-sensitive analysis of the algorithm's running time, which shows that the algorithm runs faster as the separation between clusters increases. Second, we present a number of empirical studies both on synthetically generated data and on real data sets from applications in color quantization, data compression, and image segmentation.

5,288 citations