scispace - formally typeset
Search or ask a question
Author

Michael Tonge

Bio: Michael Tonge is an academic researcher from AstraZeneca. The author has contributed to research in topics: Estrogen receptor & Allosteric regulation. The author has an hindex of 10, co-authored 13 publications receiving 495 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+ breast cells that could provide meaningful benefit to ER(+) breast cancer patients.
Abstract: Fulvestrant is an estrogen receptor (ER) antagonist administered to breast cancer patients by monthly intramuscular injection. Given its present limitations of dosing and route of administration, a more flexible orally available compound has been sought to pursue the potential benefits of this drug in patients with advanced metastatic disease. Here we report the identification and characterization of AZD9496, a nonsteroidal small-molecule inhibitor of ERα, which is a potent and selective antagonist and downregulator of ERα in vitro and in vivo in ER-positive models of breast cancer. Significant tumor growth inhibition was observed as low as 0.5 mg/kg dose in the estrogen-dependent MCF-7 xenograft model, where this effect was accompanied by a dose-dependent decrease in PR protein levels, demonstrating potent antagonist activity. Combining AZD9496 with PI3K pathway and CDK4/6 inhibitors led to further growth-inhibitory effects compared with monotherapy alone. Tumor regressions were also seen in a long-term estrogen-deprived breast model, where significant downregulation of ERα protein was observed. AZD9496 bound and downregulated clinically relevant ESR1 mutants in vitro and inhibited tumor growth in an ESR1-mutant patient-derived xenograft model that included a D538G mutation. Collectively, the pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+) breast cells that could provide meaningful benefit to ER(+) breast cancer patients. AZD9496 is currently being evaluated in a phase I clinical trial. Cancer Res; 76(11); 3307-18. ©2016 AACR.

155 citations

Journal ArticleDOI
TL;DR: The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described.
Abstract: The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described. A directed screen identified the 1-aryl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole motif as a novel, druglike ER ligand. Aided by crystal structures of novel ligands bound to an ER construct, medicinal chemistry iterations led to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (30b, AZD9496), a clinical candidate with high oral bioavailability across preclinical species that is currently being evaluated in phase I clinical trials for the treatment of advanced estrogen receptor (ER) positive breast cancer.

143 citations

Journal ArticleDOI
TL;DR: The development of an acoustic mist ionization (AMI) interface capable of contactless nanoliter-scale "infusion" of up to three individual samples per second into the mass detector is presented.
Abstract: Mass spectrometry (MS) has many advantages as a quantitative detection technology for applications within drug discovery. However, current methods of liquid sample introduction to a detector are slow and limit the use of mass spectrometry for kinetic and high-throughput applications. We present the development of an acoustic mist ionization (AMI) interface capable of contactless nanoliter-scale “infusion” of up to three individual samples per second into the mass detector. Installing simple plate handling automation allowed us to reach a throughput of 100 000 samples per day on a single mass spectrometer. We applied AMI-MS to identify inhibitors of a human histone deacetylase from AstraZeneca’s collection of 2 million small molecules and measured their half-maximal inhibitory concentration. The speed, sensitivity, simplicity, robustness, and consumption of nanoliter volumes of sample suggest that this technology will have a major impact across many areas of basic and applied research.

79 citations

Journal ArticleDOI
TL;DR: Multiple series of highly selective covalent ERK1/2 inhibitors informed by structure-based drug design (SBDD) are identified for potential in vitro and in vivo studies to assess the risks and or benefits of targeting this pathway through such a mechanism of action.
Abstract: The RAS/RAF/MEK/ERK signaling pathway has been targeted with a number of small molecule inhibitors in oncology clinical development across multiple disease indications. Importantly, cell lines with acquired resistance to B-RAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition by small molecule inhibitors. There are a number of selective, noncovalent ERK1/2 inhibitors reported along with the promiscuous hypothemycin (and related analogues) that act via a covalent mechanism of action. This article reports the identification of multiple series of highly selective covalent ERK1/2 inhibitors informed by structure-based drug design (SBDD). As a starting point for these covalent inhibitors, reported ERK1/2 inhibitors and a chemical series identified via high-throughput screening were exploited. These approaches resulted in the identification of selective covalent tool compounds for potential in vitro and in vivo studies to assess the risks and or benefits of targeting this pathway t...

73 citations

Journal ArticleDOI
TL;DR: Attempts to directly drug the important oncogene KRAS have met with limited success despite numerous efforts across industry and academia, and the KRASG12C mutant represents an “Achilles heel” and has ...
Abstract: Attempts to directly drug the important oncogene KRAS have met with limited success despite numerous efforts across industry and academia. The KRASG12C mutant represents an "Achilles heel" and has recently yielded to covalent targeting with small molecules that bind the mutant cysteine and create an allosteric pocket on GDP-bound RAS, locking it in an inactive state. A weak inhibitor at this site was optimized through conformational locking of a piperazine-quinazoline motif and linker modification. Subsequent introduction of a key methyl group to the piperazine resulted in enhancements in potency, permeability, clearance, and reactivity, leading to identification of a potent KRASG12C inhibitor with high selectivity and excellent cross-species pharmacokinetic parameters and in vivo efficacy.

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Induced protein degradation has the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Abstract: Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

854 citations

Journal ArticleDOI
TL;DR: An in-depth analysis of the function, role and therapeutic potential of 450 expert-curated human DDR genes is presented, and systematic computational analysis is applied to identify DDR proteins that are amenable to modulation by small molecules, highlighting potential novel therapeutic targets.
Abstract: The DNA damage response (DDR) is essential for maintaining the genomic integrity of the cell, and its disruption is one of the hallmarks of cancer. Classically, defects in the DDR have been exploited therapeutically in the treatment of cancer with radiation therapies or genotoxic chemotherapies. More recently, protein components of the DDR systems have been identified as promising avenues for targeted cancer therapeutics. Here, we present an in-depth analysis of the function, role in cancer and therapeutic potential of 450 expert-curated human DDR genes. We discuss the DDR drugs that have been approved by the US Food and Drug Administration (FDA) or that are under clinical investigation. We examine large-scale genomic and expression data for 15 cancers to identify deregulated components of the DDR, and we apply systematic computational analysis to identify DDR proteins that are amenable to modulation by small molecules, highlighting potential novel therapeutic targets.

428 citations

Journal ArticleDOI
TL;DR: Recent advances in delineating mechanisms of resistance to endocrine therapies and potential strategies to overcome such resistance are reviewed.

315 citations

Journal ArticleDOI
TL;DR: Although many mutations lead to constitutive activity and reduced sensitivity to ER antagonists, only select mutants such as Y537S caused a magnitude of change associated with fulvestrant resistance in vivo, which point to a need for antagonists with optimal pharmacokinetic properties to realize clinical efficacy against certain ESR1 mutants.
Abstract: Recent studies have identified somatic ESR1 mutations in patients with metastatic breast cancer and found some of them to promote estrogen-independent activation of the receptor. The degree to which all recurrent mutants can drive estrogen-independent activities and reduced sensitivity to ER antagonists like fulvestrant is not established. In this report, we characterize the spectrum of ESR1 mutations from more than 900 patients. ESR1 mutations were detected in 10%, with D538G being the most frequent (36%), followed by Y537S (14%). Several novel, activating mutations were also detected (e.g., L469V, V422del, and Y537D). Although many mutations lead to constitutive activity and reduced sensitivity to ER antagonists, only select mutants such as Y537S caused a magnitude of change associated with fulvestrant resistance in vivo Correspondingly, tumors driven by Y537S, but not D5358G, E380Q, or S463P, were less effectively inhibited by fulvestrant than more potent and bioavailable antagonists, including AZD9496. These data point to a need for antagonists with optimal pharmacokinetic properties to realize clinical efficacy against certain ESR1 mutants.Significance: A diversity of activating ESR1 mutations exist, only some of which confer resistance to existing ER antagonists that might be overcome by next-generation inhibitors such as AZD9496. Cancer Discov; 7(3); 277-87. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 235.

261 citations

Journal ArticleDOI
TL;DR: The evolution of the approach to target validation, hit and lead optimization, pharmacokinetic/pharmacodynamic modelling and drug safety testing, which have helped improve the quality of candidate drug nomination, as well as the development of the right culture.
Abstract: In 2011, AstraZeneca embarked on a major revision of its research and development (R&D) strategy with the aim of improving R&D productivity, which was below industry averages in 2005-2010. A cornerstone of the revised strategy was to focus decision-making on five technical determinants (the right target, right tissue, right safety, right patient and right commercial potential). In this article, we describe the progress made using this '5R framework' in the hope that our experience could be useful to other companies tackling R&D productivity issues. We focus on the evolution of our approach to target validation, hit and lead optimization, pharmacokinetic/pharmacodynamic modelling and drug safety testing, which have helped improve the quality of candidate drug nomination, as well as the development of the right culture, where 'truth seeking' is encouraged by more rigorous and quantitative decision-making. We also discuss where the approach has failed and the lessons learned. Overall, the continued evolution and application of the 5R framework are beginning to have an impact, with success rates from candidate drug nomination to phase III completion improving from 4% in 2005-2010 to 19% in 2012-2016.

261 citations