scispace - formally typeset
Search or ask a question
Author

Michael Trupke

Bio: Michael Trupke is an academic researcher from University of Vienna. The author has contributed to research in topics: Photon & Quantum network. The author has an hindex of 27, co-authored 80 publications receiving 2116 citations. Previous affiliations of Michael Trupke include University of Southampton & Vienna University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature, and the transition rates and absorption cross-section of these emitters are determined using an optically detected magnetic resonance technique.
Abstract: Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.

200 citations

Journal ArticleDOI
TL;DR: New calculations reveal that physical qubits can be assembled that are scalable and function at the readily accessible temperature of 4 K.
Abstract: Building a quantum computer has long been thought to require futuristic technologies. New calculations reveal that physical qubits can be assembled that are scalable and function at the readily accessible temperature of 4 K.

180 citations

Journal ArticleDOI
TL;DR: In this article, a microfabricated optical cavity is presented, which combines a very small mode volume with high finesse, enabling atoms and molecules direct access to the high-intensity part of the field mode, enabling them to interact strongly with photons in the cavity for the purposes of detection and quantum-coherent manipulation.
Abstract: We present a microfabricated optical cavity, which combines a very small mode volume with high finesse. In contrast to other micro-resonators, such as microspheres, the structure we have built gives atoms and molecules direct access to the high-intensity part of the field mode, enabling them to interact strongly with photons in the cavity for the purposes of detection and quantum-coherent manipulation. Light couples directly in and out of the resonator through an optical fiber, avoiding the need for sensitive coupling optics. This renders the cavity particularly attractive as a component of a lab-on-a-chip, and as a node in a quantum network.

169 citations

Journal ArticleDOI
15 Feb 2019-Science
TL;DR: On-chip detection and coherent manipulation of nitrogen-vacancy centers in diamond are demonstrated optoelectronically, and photoelectrical imaging of individual NV centers at room temperature was demonstrated, surpassing conventional optical readout methods by providing high imaging contrast and signal-to-noise ratio.
Abstract: Nitrogen-vacancy (NV) centers in diamond have become an important instrument for quantum sensing and quantum information science. However, the readout of NV spin state requires bulky optical setups, limiting fabrication of miniaturized compact devices for practical use. Here we realized photoelectrical detection of magnetic resonance as well as Rabi oscillations on a single-defect level. Furthermore, photoelectrical imaging of individual NV centers at room temperature was demonstrated, surpassing conventional optical readout methods by providing high imaging contrast and signal-to-noise ratio. These results pave the way toward fully integrated quantum diamond devices.

130 citations

Journal ArticleDOI
TL;DR: The cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers to build an optical microcavity network on an atom chip for applications in quantum information processing.
Abstract: A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps toward building an optical microcavity network on an atom chip for applications in quantum information processing.

117 citations


Cited by
More filters
Journal ArticleDOI
18 Jun 2008-Nature
TL;DR: In this paper, the authors proposed a method for quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner, allowing the distribution of entanglement across the network and teleportation of quantum states between nodes.
Abstract: Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.

5,003 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the application of atomic physics to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics and test the principles of general relativity.
Abstract: Advances in atomic physics, such as cooling and trapping of atoms and molecules and developments in frequency metrology, have added orders of magnitude to the precision of atom-based clocks and sensors. Applications extend beyond atomic physics and this article reviews using these new techniques to address important challenges in physics and to look for variations in the fundamental constants, search for interactions beyond the standard model of particle physics, and test the principles of general relativity.

1,077 citations

Journal Article
TL;DR: In this paper, the authors show that a homogeneous 1D Bose gas with point-like collisional interactions is integrable, and that it is possible to construct a system with many degrees of freedom that does not reach thermal equilibrium even after thousands of collisions.
Abstract: It is a fundamental assumption of statistical mechanics that a closed system with many degrees of freedom ergodically samples all equal energy points in phase space. To understand the limits of this assumption, it is important to find and study systems that are not ergodic, and thus do not reach thermal equilibrium. A few complex systems have been proposed that are expected not to thermalize because their dynamics are integrable. Some nearly integrable systems of many particles have been studied numerically, and shown not to ergodically sample phase space. However, there has been no experimental demonstration of such a system with many degrees of freedom that does not approach thermal equilibrium. Here we report the preparation of out-of-equilibrium arrays of trapped one-dimensional (1D) Bose gases, each containing from 40 to 250 87Rb atoms, which do not noticeably equilibrate even after thousands of collisions. Our results are probably explainable by the well-known fact that a homogeneous 1D Bose gas with point-like collisional interactions is integrable. Until now, however, the time evolution of out-of-equilibrium 1D Bose gases has been a theoretically unsettled issue, as practical factors such as harmonic trapping and imperfectly point-like interactions may compromise integrability. The absence of damping in 1D Bose gases may lead to potential applications in force sensing and atom interferometry.

941 citations

Journal ArticleDOI
TL;DR: The time is ripe for describing some of the recent development of superconducting devices, systems and applications as well as practical applications of QIP, such as computation and simulation in Physics and Chemistry.
Abstract: During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.

809 citations