scispace - formally typeset
Search or ask a question
Author

Michael W. Marcellin

Other affiliations: Siemens, Los Alamos National Laboratory, Texas A&M University  ...read more
Bio: Michael W. Marcellin is an academic researcher from University of Arizona. The author has contributed to research in topics: Data compression & Image compression. The author has an hindex of 37, co-authored 266 publications receiving 8809 citations. Previous affiliations of Michael W. Marcellin include Siemens & Los Alamos National Laboratory.


Papers
More filters
Book
30 Nov 2001
TL;DR: This work has specific applications for those involved in the development of software and hardware solutions for multimedia, internet, and medical imaging applications.
Abstract: This is nothing less than a totally essential reference for engineers and researchers in any field of work that involves the use of compressed imagery. Beginning with a thorough and up-to-date overview of the fundamentals of image compression, the authors move on to provide a complete description of the JPEG2000 standard. They then devote space to the implementation and exploitation of that standard. The final section describes other key image compression systems. This work has specific applications for those involved in the development of software and hardware solutions for multimedia, internet, and medical imaging applications.

3,115 citations

Journal ArticleDOI
TL;DR: The authors adopt the notions of signal set expansion, set partitioning, and branch labeling of TCM, but modify the techniques to account for the source distribution, to design TCQ coders of low complexity with excellent mean-squared-error (MSE) performance.
Abstract: Trellis-coded quantization (TCQ) is developed and applied to the encoding of memoryless and Gauss-Markov sources. The theoretical justification for the approach is alphabet-constrained rate distortion theory, which is a dual to the channel capacity argument that motivates trellis-coded modulation (TCM). The authors adopt the notions of signal set expansion, set partitioning, and branch labeling of TCM, but modify the techniques to account for the source distribution, to design TCQ coders of low complexity with excellent mean-squared-error (MSE) performance. For a memoryless uniform source, TCQ provides an MSE within 0.21 dB of the distortion-rate bound at all positive (integral) rates. The performance is superior to that promised by the coefficient of quantization for all of the best lattices known in dimensions 24 or less. For a memoryless Gaussian source, the TCQ performance at rates of 0.5, 1, and 2 b/sample is superior to all previous results the authors found in the literature. The encoding complexity of TCQ is very modest. TCQ is incorporated into a predictive coding structure for the encoding of Gauss-Markov sources. Simulation results for first-, second-, and third-order Gauss-Markov sources are presented. >

635 citations

Proceedings ArticleDOI
28 Mar 2000
TL;DR: The JPEG-2000 standard as discussed by the authors is an emerging standard for still image compression, which defines the minimum compliant decoder and bitstream syntax, as well as optional, value-added extensions.
Abstract: JPEG-2000 is an emerging standard for still image compression. This paper provides a brief history of the JPEG-2000 standardization process, an overview of the standard, and some description of the capabilities provided by the standard. Part I of the JPEG-2000 standard specifies the minimum compliant decoder, while Part II describes optional, value-added extensions. Although the standard specifies only the decoder and bitstream syntax, in this paper we describe JPEG-2000 from the point of view of encoding. We take this approach, as we believe it is more amenable to a compact description more easily understood by most readers.

391 citations

Proceedings Article
01 Jan 2000

365 citations

Journal ArticleDOI
07 Nov 2002
TL;DR: A tutorial-style review of the new JPEG2000, explaining the technology on which it is based and drawing comparisons with JPEG and other compression standards is provided.
Abstract: JPEG2000 is the latest image compression standard to emerge from the Joint Photographic Experts Group (JPEG) working under the auspices of the International Standards Organization. Although the new standard does offer superior compression performance to JPEG, JPEG2000 provides a whole new way of interacting with compressed imagery in a scalable and interoperable fashion. This paper provides a tutorial-style review of the new standard, explaining the technology on which it is based and drawing comparisons with JPEG and other compression standards. The paper also describes new work, exploiting the capabilities of JPEG2000 in client-server systems for efficient interactive browsing of images over the Internet.

275 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Abstract: Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.

40,609 citations

Journal ArticleDOI
TL;DR: The theory of compressive sampling, also known as compressed sensing or CS, is surveyed, a novel sensing/sampling paradigm that goes against the common wisdom in data acquisition.
Abstract: Conventional approaches to sampling signals or images follow Shannon's theorem: the sampling rate must be at least twice the maximum frequency present in the signal (Nyquist rate). In the field of data conversion, standard analog-to-digital converter (ADC) technology implements the usual quantized Shannon representation - the signal is uniformly sampled at or above the Nyquist rate. This article surveys the theory of compressive sampling, also known as compressed sensing or CS, a novel sensing/sampling paradigm that goes against the common wisdom in data acquisition. CS theory asserts that one can recover certain signals and images from far fewer samples or measurements than traditional methods use.

9,686 citations

Journal ArticleDOI
TL;DR: A novel algorithm for adapting dictionaries in order to achieve sparse signal representations, the K-SVD algorithm, an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data.
Abstract: In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and include compression, regularization in inverse problems, feature extraction, and more. Recent activity in this field has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done by either selecting one from a prespecified set of linear transforms or adapting the dictionary to a set of training signals. Both of these techniques have been considered, but this topic is largely still open. In this paper we propose a novel algorithm for adapting dictionaries in order to achieve sparse signal representations. Given a set of training signals, we seek the dictionary that leads to the best representation for each member in this set, under strict sparsity constraints. We present a new method-the K-SVD algorithm-generalizing the K-means clustering process. K-SVD is an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data. The update of the dictionary columns is combined with an update of the sparse representations, thereby accelerating convergence. The K-SVD algorithm is flexible and can work with any pursuit method (e.g., basis pursuit, FOCUSS, or matching pursuit). We analyze this algorithm and demonstrate its results both on synthetic tests and in applications on real image data

8,905 citations

Journal ArticleDOI
TL;DR: Practical incoherent undersampling schemes are developed and analyzed by means of their aliasing interference and demonstrate improved spatial resolution and accelerated acquisition for multislice fast spin‐echo brain imaging and 3D contrast enhanced angiography.
Abstract: The sparsity which is implicit in MR images is exploited to significantly undersample k -space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finite-differences or their wavelet coefficients. According to the recently developed mathematical theory of compressedsensing, images with a sparse representation can be recovered from randomly undersampled k -space data, provided an appropriate nonlinear recovery scheme is used. Intuitively, artifacts due to random undersampling add as noise-like interference. In the sparse transform domain the significant coefficients stand out above the interference. A nonlinear thresholding scheme can recover the sparse coefficients, effectively recovering the image itself. In this article, practical incoherent undersampling schemes are developed and analyzed by means of their aliasing interference. Incoherence is introduced by pseudo-random variable-density undersampling of phase-encodes. The reconstruction is performed by minimizing the 1 norm of a transformed image, subject to data

6,653 citations

Journal ArticleDOI
TL;DR: The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods.
Abstract: Embedded zerotree wavelet (EZW) coding, introduced by Shapiro (see IEEE Trans. Signal Processing, vol.41, no.12, p.3445, 1993), is a very effective and computationally simple technique for image compression. We offer an alternative explanation of the principles of its operation, so that the reasons for its excellent performance can be better understood. These principles are partial ordering by magnitude with a set partitioning sorting algorithm, ordered bit plane transmission, and exploitation of self-similarity across different scales of an image wavelet transform. Moreover, we present a new and different implementation based on set partitioning in hierarchical trees (SPIHT), which provides even better performance than our previously reported extension of EZW that surpassed the performance of the original EZW. The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods. In addition, the new coding and decoding procedures are extremely fast, and they can be made even faster, with only small loss in performance, by omitting entropy coding of the bit stream by the arithmetic code.

5,890 citations