scispace - formally typeset
Search or ask a question
Author

Michael Werman

Bio: Michael Werman is an academic researcher from Hebrew University of Jerusalem. The author has contributed to research in topics: Epipolar geometry & Pixel. The author has an hindex of 35, co-authored 167 publications receiving 7475 citations. Previous affiliations of Michael Werman include University of Maryland, College Park.


Papers
More filters
Proceedings ArticleDOI
01 Jul 2002
TL;DR: The results demonstrate that the method is capable of drastic dynamic range compression, while preserving fine details and avoiding common artifacts, such as halos, gradient reversals, or loss of local contrast.
Abstract: We present a new method for rendering high dynamic range images on conventional displays. Our method is conceptually simple, computationally efficient, robust, and easy to use. We manipulate the gradient field of the luminance image by attenuating the magnitudes of large gradients. A new, low dynamic range image is then obtained by solving a Poisson equation on the modified gradient field. Our results demonstrate that the method is capable of drastic dynamic range compression, while preserving fine details and avoiding common artifacts, such as halos, gradient reversals, or loss of local contrast. The method is also able to significantly enhance ordinary images by bringing out detail in dark regions.

1,441 citations

Proceedings ArticleDOI
01 Sep 2009
TL;DR: A new algorithm is presented for a robust family of Earth Mover's Distances - EMDs with thresholded ground distances so that the number of edges is reduced by an order of magnitude, which makes it possible to compute the EMD on large histograms and databases.
Abstract: We present a new algorithm for a robust family of Earth Mover's Distances - EMDs with thresholded ground distances. The algorithm transforms the flow-network of the EMD so that the number of edges is reduced by an order of magnitude. As a result, we compute the EMD by an order of magnitude faster than the original algorithm, which makes it possible to compute the EMD on large histograms and databases. In addition, we show that EMDs with thresholded ground distances have many desirable properties. First, they correspond to the way humans perceive distances. Second, they are robust to outlier noise and quantization effects. Third, they are metrics. Finally, experimental results on image retrieval show that thresholding the ground distance of the EMD improves both accuracy and speed.

871 citations

Journal ArticleDOI
TL;DR: Two linear time algorithms for computing the Euclidean distance transform of a two-dimensional binary image are presented based on the construction and regular sampling of the Voronoi diagram whose sites consist of the unit pixels in the image.
Abstract: Two linear time (and hence asymptotically optimal) algorithms for computing the Euclidean distance transform of a two-dimensional binary image are presented. The algorithms are based on the construction and regular sampling of the Voronoi diagram whose sites consist of the unit (feature) pixels in the image. The first algorithm, which is of primarily theoretical interest, constructs the complete Voronoi diagram. The second, more practical, algorithm constructs the Voronoi diagram where it intersects the horizontal lines passing through the image pixel centers. Extensions to higher dimensional images and to other distance functions are also discussed. >

457 citations

Book ChapterDOI
12 Oct 2008
TL;DR: A new metric between histograms such as SIFT descriptors and a linear time algorithm for its computation and extensive experimental results show that the method outperforms state of the art distances.
Abstract: We present a new metric between histograms such as SIFT descriptors and a linear time algorithm for its computation. It is common practice to use the L 2 metric for comparing SIFT descriptors. This practice assumes that SIFT bins are aligned, an assumption which is often not correct due to quantization, distortion, occlusion etc. In this paper we present a new Earth Mover's Distance (EMD) variant. We show that it is a metric (unlike the original EMD [1] which is a metric only for normalized histograms). Moreover, it is a natural extension of the L 1 metric. Second, we propose a linear time algorithm for the computation of the EMD variant, with a robust ground distance for oriented gradients. Finally, extensive experimental results on the Mikolajczyk and Schmid dataset [2] show that our method outperforms state of the art distances.

355 citations

Book ChapterDOI
05 Sep 2010
TL;DR: It is shown that the new QC members outperform state of the art distances for these tasks, while having a short running time, and the experimental results show that both the cross-bin property and the normalization are important.
Abstract: We present a new histogram distance family, the Quadratic-Chi (QC) QC members are Quadratic-Form distances with a cross-bin χ2-like normalization The cross-bin χ2-like normalization reduces the effect of large bins having undo influence Normalization was shown to be helpful in many cases, where the χ2 histogram distance outperformed the L2 norm However, χ2 is sensitive to quantization effects, such as caused by light changes, shape deformations etc The Quadratic-Form part of QC members takes care of cross-bin relationships (eg red and orange), alleviating the quantization problem We present two new crossbin histogram distance properties: Similarity-Matrix-Quantization-Invariance and Sparseness-Invariance and show that QC distances have these propertiesWe also show that experimentally they boost performance QC distances computation time complexity is linear in the number of non-zero entries in the bin-similarity matrix and histograms and it can easily be parallelizedWe present results for image retrieval using the Scale Invariant Feature Transform (SIFT) and color image descriptors In addition, we present results for shape classification using Shape Context (SC) and Inner Distance Shape Context (IDSC) We show that the new QC members outperform state of the art distances for these tasks, while having a short running time The experimental results show that both the cross-bin property and the normalization are important

273 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: This work presents two algorithms based on graph cuts that efficiently find a local minimum with respect to two types of large moves, namely expansion moves and swap moves that allow important cases of discontinuity preserving energies.
Abstract: Many tasks in computer vision involve assigning a label (such as disparity) to every pixel. A common constraint is that the labels should vary smoothly almost everywhere while preserving sharp discontinuities that may exist, e.g., at object boundaries. These tasks are naturally stated in terms of energy minimization. The authors consider a wide class of energies with various smoothness constraints. Global minimization of these energy functions is NP-hard even in the simplest discontinuity-preserving case. Therefore, our focus is on efficient approximation algorithms. We present two algorithms based on graph cuts that efficiently find a local minimum with respect to two types of large moves, namely expansion moves and swap moves. These moves can simultaneously change the labels of arbitrarily large sets of pixels. In contrast, many standard algorithms (including simulated annealing) use small moves where only one pixel changes its label at a time. Our expansion algorithm finds a labeling within a known factor of the global minimum, while our swap algorithm handles more general energy functions. Both of these algorithms allow important cases of discontinuity preserving energies. We experimentally demonstrate the effectiveness of our approach for image restoration, stereo and motion. On real data with ground truth, we achieve 98 percent accuracy.

7,413 citations

Journal ArticleDOI
TL;DR: The working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap are discussed, as well as aspects of system engineering: databases, system architecture, and evaluation.
Abstract: Presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.

6,447 citations

Journal ArticleDOI
TL;DR: The guided filter is a novel explicit image filter derived from a local linear model that can be used as an edge-preserving smoothing operator like the popular bilateral filter, but it has better behaviors near edges.
Abstract: In this paper, we propose a novel explicit image filter called guided filter. Derived from a local linear model, the guided filter computes the filtering output by considering the content of a guidance image, which can be the input image itself or another different image. The guided filter can be used as an edge-preserving smoothing operator like the popular bilateral filter [1], but it has better behaviors near edges. The guided filter is also a more generic concept beyond smoothing: It can transfer the structures of the guidance image to the filtering output, enabling new filtering applications like dehazing and guided feathering. Moreover, the guided filter naturally has a fast and nonapproximate linear time algorithm, regardless of the kernel size and the intensity range. Currently, it is one of the fastest edge-preserving filters. Experiments show that the guided filter is both effective and efficient in a great variety of computer vision and computer graphics applications, including edge-aware smoothing, detail enhancement, HDR compression, image matting/feathering, dehazing, joint upsampling, etc.

4,730 citations

Journal ArticleDOI
TL;DR: This paper investigates the properties of a metric between two distributions, the Earth Mover's Distance (EMD), for content-based image retrieval, and compares the retrieval performance of the EMD with that of other distances.
Abstract: We investigate the properties of a metric between two distributions, the Earth Mover's Distance (EMD), for content-based image retrieval. The EMD is based on the minimal cost that must be paid to transform one distribution into the other, in a precise sense, and was first proposed for certain vision problems by Peleg, Werman, and Rom. For image retrieval, we combine this idea with a representation scheme for distributions that is based on vector quantization. This combination leads to an image comparison framework that often accounts for perceptual similarity better than other previously proposed methods. The EMD is based on a solution to the transportation problem from linear optimization, for which efficient algorithms are available, and also allows naturally for partial matching. It is more robust than histogram matching techniques, in that it can operate on variable-length representations of the distributions that avoid quantization and other binning problems typical of histograms. When used to compare distributions with the same overall mass, the EMD is a true metric. In this paper we focus on applications to color and texture, and we compare the retrieval performance of the EMD with that of other distances.

4,593 citations