scispace - formally typeset
Search or ask a question
Author

Michaele C. Christian

Bio: Michaele C. Christian is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Chemotherapy & Clinical trial. The author has an hindex of 24, co-authored 47 publications receiving 21639 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A model by which a combined assessment of all existing lesions, characterized by target lesions and nontarget lesions, is used to extrapolate an overall response to treatment is proposed, which is largely validated by the Response Evaluation Criteria in Solid Tumors Group and integrated into the present guidelines.
Abstract: Anticancer cytotoxic agents go through a process by which their antitumor activity-on the basis of the amount of tumor shrinkage they could generate-has been investigated. In the late 1970s, the International Union Against Cancer and the World Health Organization introduced specific criteria for the codification of tumor response evaluation. In 1994, several organizations involved in clinical research combined forces to tackle the review of these criteria on the basis of the experience and knowledge acquired since then. After several years of intensive discussions, a new set of guidelines is ready that will supersede the former criteria. In parallel to this initiative, one of the participating groups developed a model by which response rates could be derived from unidimensional measurement of tumor lesions instead of the usual bidimensional approach. This new concept has been largely validated by the Response Evaluation Criteria in Solid Tumors Group and integrated into the present guidelines. This special article also provides some philosophic background to clarify the various purposes of response evaluation. It proposes a model by which a combined assessment of all existing lesions, characterized by target lesions (to be measured) and nontarget lesions, is used to extrapolate an overall response to treatment. Methods of assessing tumor lesions are better codified, briefly within the guidelines and in more detail in Appendix I. All other aspects of response evaluation have been discussed, reviewed, and amended whenever appropriate.

14,926 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a model by which a combined assessment of all existing lesions, characterized by target lesions (to be measured) and nontarget lesions, is used to extrapolate an overall response to treatment.
Abstract: Anticancer cytotoxic agents go through a process by which their antitumor activity-on the basis of the amount of tumor shrinkage they could generate-has been investigated. In the late 1970s, the International Union Against Cancer and the World Health Organization introduced specific criteria for the codification of tumor response evaluation. In 1994, several organizations involved in clinical research combined forces to tackle the review of these criteria on the basis of the experience and knowledge acquired since then. After several years of intensive discussions, a new set of guidelines is ready that will supersede the former criteria. In parallel to this initiative, one of the participating groups developed a model by which response rates could be derived from unidimensional measurement of tumor lesions instead of the usual bidimensional approach. This new concept has been largely validated by the Response Evaluation Criteria in Solid Tumors Group and integrated into the present guidelines. This special article also provides some philosophic background to clarify the various purposes of response evaluation. It proposes a model by which a combined assessment of all existing lesions, characterized by target lesions (to be measured) and nontarget lesions, is used to extrapolate an overall response to treatment. Methods of assessing tumor lesions are better codified, briefly within the guidelines and in more detail in Appendix I. All other aspects of response evaluation have been discussed, reviewed, and amended whenever appropriate.

3,089 citations

Journal ArticleDOI
TL;DR: Accelerated titration (i.e., rapid intrapatient drug dose escalation) designs appear to effectively reduce the number of patients who are under-treated, speed the completion of phase I trials, and provide a substantial increase in the information obtained.
Abstract: Background: Many cancer patients in phase I clinical trials are treated at doses of chemotherapeutic agents that are below the biologically active level, thus reducing their chances for therapeutic benefit. Current phase I trials often take a long time to complete and provide little information about interpatient variability or cumulative toxicity. Purpose: Our objective was to develop alternative designs for phase I trials so that fewer patients are treated at subtherapeutic dose levels, trials are of reduced duration, and important information (i.e., cumulative toxicity and maximum tolerated dose) needed to plan phase II trials is obtained. Methods: We fit a stochastic model to data from 20 phase I trials involving the study of nine different drugs. We then simulated new data from the model with the parameters estimated from the actual trials and evaluated the performance of alternative phase I designs on this simulated data. Four designs were evaluated. Design 1 was a conventional design (similar to the commonly used modified Fibonacci method) using cohorts of three to six patients, with 40% dose-step increments and no intrapatient dose escalation. Designs 2 through 4 included only one patient per cohort until one patient experienced dose-limiting toxic effects or two patients experienced grade 2 toxic effects (during their first course of treatment for designs 2 and 3 or during any course of treatment for design 4). Designs 3 and 4 used 100% dose steps during this initial accelerated phase. After the initial accelerated phase, designs 2 through 4 resorted to standard cohorts of three to six patients, with 40% dose-step increments. Designs 2 through 4 used intrapatient dose escalation if the worst toxicity is grade 0-1 in the previous course for that patient. Results: Only three of the actual trials demonstrated cumulative toxic effects of the chemotherapeutic agents in patients. The average number of patients required for a phase I trial was reduced from 39.9 for design 1 to 24.4, 20.7, and 21.2 for designs 2, 3, and 4, respectively. The average number of patients who would be expected to have grade 0-1 toxicity as their worst toxicity over three cycles of treatment is 23.3 for design 1, but only 7.9, 3.9, and 4.8 for designs 2, 3, and 4, respectively. The average number of patients with grade 3 toxicity as their worst toxicity increases from 5.5 for design 1 to 6.2, 6.8, and 6.2 for designs 2, 3, and 4, respectively. The average number of patients with grade 4 toxicity as their worst toxicity increases from 1.9 for design 1 to 3.0, 4.3, and 3.2 for designs 2, 3, and 4, respectively. Conclusion: Accelerated titration (i.e., rapid intrapatient drug dose escalation) designs appear to effectively reduce the number of patients who are undertreated, speed the completion of phase I trials, and provide a substantial increase in the information obtained. [J Natl Cancer Inst 1997;89:1138-47]

591 citations

Journal ArticleDOI
08 Feb 1995-JAMA
TL;DR: There is no evidence available yet that the current screening modalities of CA 125 and transvaginal ultrasonography can be effectively used for widespread screening to reduce mortality from ovarian cancer nor that their use will result in decreased rather than increased morbidity and mortality.
Abstract: Objective. —To provide physicians with a current consensus on screening, prevention, diagnosis, and treatment of ovarian cancer. Participants. —A nonfederal, nonadvocate, 14-member consensus panel representing the fields of gynecologic, medical, and radiation oncology, obstetrics/ gynecology, and biostatistics; 25 experts in obstetrics/gynecology and gynecologic, medical, and radiation oncology who presented data to the consensus panel; and a conference audience of approximately 500. Evidence. —The literature was searched through MEDLINE, and an extensive bibliography of references was produced for the panel and the conference audience. Experts prepared abstracts with relevant citations from the literature. Scientific evidence was given priority over clinical anecdotal experience. Consensus. —The panel, answering predefined consensus questions, developed their conclusions based on the scientific evidence presented in open forum and the scientific literature. Consensus Statement. —The panel composed a draft statement that was read in its entirety and circulated to the experts and the audience for comment. The panel resolved conflicting recommendations and released a revised statement at the end of the conference. The panel finalized the revisions within a few weeks after the conference. Conclusions. —There is no evidence available yet that the current screening modalities of CA-125 and transvaginal ultrasonography can be effectively used for widespread screening to reduce mortality from ovarian cancer nor that their use will result in decreased rather than increased morbidity and mortality. Women with stage IA grade 1 and stage IB grade 1 ovarian cancer do not require postoperative adjuvant therapy. Many remaining stage I patients do require chemotherapy. Subsets of stage I must be fully defined and ideal treatment determined. Women with stages II, III, and IV epithelial ovarian cancer (other than low malignant potential tumors) should receive postoperative chemotherapy. (JAMA. 1995;273:491-497)

586 citations

Journal ArticleDOI
TL;DR: It is concluded that one dimensional measurement of tumor maximum diameter may be sufficient to assess change in solid tumors.
Abstract: Background: Tumor shrinkage is a common end point used in screening new cytotoxic agents. The standard World Health Organization criterion for partial response is a 50% or more decrease in the sum of the products of two measurements (the maximum diameter of a tumor and the largest diameter perpendicular to this maximum diameter) of individual tumors. However, theoretically, the simple sum of the maximum diameters of individual tumors is more linearly related to cell kill than is the sum of the bidimensional products. It has been hypothesized that the calculation of bidimensional products is unnecessary, and a 30% decrease in the sum of maximum diameters of individual tumors (assuming spherical shape and equivalence to a 50% reduction in the sum of the bidimensional products) was proposed as a new criterion. We have applied the standard response and the new response criteria to the same data to determine whether the same number of responses in the same patients would result. Methods: Data from 569 patients included in eight studies of a variety of cancers were reanalyzed. The two response criteria were separately applied, and the results were compared using the k statistic. The importance of confirmatory measurements and the frequency of nonspherical tumors were also examined. In addition, for a subset of 128 patients, a unidimensional criterion for disease progression (30% increase in the sum of maximum diameters) was applied and compared with the standard definition of a 25% increase in the sum of the bidimensional products. Results: Agreement between the unidimensional and bidimensional criteria was generally found to be good. The k statistic for concordance for overall response was 0.95. Conclusion: We conclude that one dimensional measurement of tumor maximum diameter may be sufficient to assess change in solid tumors. [J Natl Cancer Inst 1999; 91:523‐8]

402 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The revised RECIST includes a new imaging appendix with updated recommendations on the optimal anatomical assessment of lesions, and a section on detection of new lesions, including the interpretation of FDG-PET scan assessment is included.

20,760 citations

Journal ArticleDOI
TL;DR: A model by which a combined assessment of all existing lesions, characterized by target lesions and nontarget lesions, is used to extrapolate an overall response to treatment is proposed, which is largely validated by the Response Evaluation Criteria in Solid Tumors Group and integrated into the present guidelines.
Abstract: Anticancer cytotoxic agents go through a process by which their antitumor activity-on the basis of the amount of tumor shrinkage they could generate-has been investigated. In the late 1970s, the International Union Against Cancer and the World Health Organization introduced specific criteria for the codification of tumor response evaluation. In 1994, several organizations involved in clinical research combined forces to tackle the review of these criteria on the basis of the experience and knowledge acquired since then. After several years of intensive discussions, a new set of guidelines is ready that will supersede the former criteria. In parallel to this initiative, one of the participating groups developed a model by which response rates could be derived from unidimensional measurement of tumor lesions instead of the usual bidimensional approach. This new concept has been largely validated by the Response Evaluation Criteria in Solid Tumors Group and integrated into the present guidelines. This special article also provides some philosophic background to clarify the various purposes of response evaluation. It proposes a model by which a combined assessment of all existing lesions, characterized by target lesions (to be measured) and nontarget lesions, is used to extrapolate an overall response to treatment. Methods of assessing tumor lesions are better codified, briefly within the guidelines and in more detail in Appendix I. All other aspects of response evaluation have been discussed, reviewed, and amended whenever appropriate.

14,926 citations

Journal ArticleDOI
TL;DR: Ipilimumab, with or without a gp100 peptide vaccine, as compared with gp100 alone, improved overall survival in patients with previously treated metastatic melanoma.
Abstract: Background An improvement in overall survival among patients with metastatic melanoma has been an elusive goal. In this phase 3 study, ipilimumab — which blocks cytotoxic T-lymphocyte–associated antigen 4 to potentiate an antitumor T-cell response — administered with or without a glycoprotein 100 (gp100) peptide vaccine was compared with gp100 alone in patients with previously treated metastatic melanoma. Methods A total of 676 HLA-A*0201–positive patients with unresectable stage III or IV melanoma, whose disease had progressed while they were receiving therapy for metastatic disease, were randomly assigned, in a 3:1:1 ratio, to receive ipilimumab plus gp100 (403 patients), ipilimumab alone (137), or gp100 alone (136). Ipilimumab, at a dose of 3 mg per kilogram of body weight, was administered with or without gp100 every 3 weeks for up to four treatments (induction). Eligible patients could receive reinduction therapy. The primary end point was overall survival. Results The median overall survival was 10.0 months among patients receiving ipilimumab plus gp100, as compared with 6.4 months among patients receiving gp100 alone (hazard ratio for death, 0.68; P<0.001). The median overall survival with ipilimumab alone was 10.1 months (hazard ratio for death in the comparison with gp100 alone, 0.66; P = 0.003). No difference in overall survival was detected between the ipilimumab groups (hazard ratio with ipilimumab plus gp100, 1.04; P = 0.76). Grade 3 or 4 immune-related adverse events occurred in 10 to 15% of patients treated with ipilimumab and in 3% treated with gp100 alone. There were 14 deaths related to the study drugs (2.1%), and 7 were associated with immune-related adverse events. Conclusions Ipilimumab, with or without a gp100 peptide vaccine, as compared with gp100 alone, improved overall survival in patients with previously treated metastatic melanoma. Adverse events can be severe, long-lasting, or both, but most are reversible with appropriate treatment. (Funded by Medarex and Bristol-Myers Squibb; ClinicalTrials.gov number, NCT00094653.)

13,081 citations

Journal ArticleDOI
TL;DR: A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib, and these mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor.
Abstract: BACKGROUND Most patients with non-small-cell lung cancer have no response to the tyrosine kinase inhibitor gefitinib, which targets the epidermal growth factor receptor (EGFR). However, about 10 percent of patients have a rapid and often dramatic clinical response. The molecular mechanisms underlying sensitivity to gefitinib are unknown. METHODS We searched for mutations in the EGFR gene in primary tumors from patients with non-small-cell lung cancer who had a response to gefitinib, those who did not have a response, and those who had not been exposed to gefitinib. The functional consequences of identified mutations were evaluated after the mutant proteins were expressed in cultured cells. RESULTS Somatic mutations were identified in the tyrosine kinase domain of the EGFR gene in eight of nine patients with gefitinib-responsive lung cancer, as compared with none of the seven patients with no response (P<0.001). Mutations were either small, in-frame deletions or amino acid substitutions clustered around the ATP-binding pocket of the tyrosine kinase domain. Similar mutations were detected in tumors from 2 of 25 patients with primary non-small-cell lung cancer who had not been exposed to gefitinib (8 percent). All mutations were heterozygous, and identical mutations were observed in multiple patients, suggesting an additive specific gain of function. In vitro, EGFR mutants demonstrated enhanced tyrosine kinase activity in response to epidermal growth factor and increased sensitivity to inhibition by gefitinib. CONCLUSIONS A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene, which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib. These mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor. Screening for such mutations in lung cancers may identify patients who will have a response to gefitinib.

10,879 citations

Journal ArticleDOI
TL;DR: Anti-PD-1 antibody produced objective responses in approximately one in four to one in five patients with non-small-cell lung cancer, melanoma, or renal-cell cancer; the adverse-event profile does not appear to preclude its use.
Abstract: Background Blockade of programmed death 1 (PD-1), an inhibitory receptor expressed by T cells, can overcome immune resistance. We assessed the antitumor activity and safety of BMS-936558, an antibody that specifically blocks PD-1. Methods We enrolled patients with advanced melanoma, non–small-cell lung cancer, castrationresistant prostate cancer, or renal-cell or colorectal cancer to receive anti–PD-1 antibody at a dose of 0.1 to 10.0 mg per kilogram of body weight every 2 weeks. Response was assessed after each 8-week treatment cycle. Patients received up to 12 cycles until disease progression or a complete response occurred. Results A total of 296 patients received treatment through February 24, 2012. Grade 3 or 4 drugrelated adverse events occurred in 14% of patients; there were three deaths from pulmonary toxicity. No maximum tolerated dose was defined. Adverse events consistent with immune-related causes were observed. Among 236 patients in whom response could be evaluated, objective responses (complete or partial responses) were observed in those with non–small-cell lung cancer, melanoma, or renal-cell cancer. Cumulative response rates (all doses) were 18% among patients with non–small-cell lung cancer (14 of 76 patients), 28% among patients with melanoma (26 of 94 patients), and 27% among patients with renal-cell cancer (9 of 33 patients). Responses were durable; 20 of 31 responses lasted 1 year or more in patients with 1 year or more of follow-up. To assess the role of intratumoral PD-1 ligand (PD-L1) expression in the modulation of the PD-1–PD-L1 pathway, immunohistochemical analysis was performed on pretreatment tumor specimens obtained from 42 patients. Of 17 patients with PD-L1–negative tumors, none had an objective response; 9 of 25 patients (36%) with PD-L1–positive tumors had an objective response (P = 0.006). Conclusions Anti–PD-1 antibody produced objective responses in approximately one in four to one in five patients with non–small-cell lung cancer, melanoma, or renal-cell cancer; the adverse-event profile does not appear to preclude its use. Preliminary data suggest a relationship between PD-L1 expression on tumor cells and objective response. (Funded by Bristol-Myers Squibb and others; ClinicalTrials.gov number, NCT00730639.)

10,674 citations