Author
Michal Simko
Bio: Michal Simko is an academic researcher from Vienna University of Technology. The author has contributed to research in topics: Orthogonal frequency-division multiplexing & Communication channel. The author has an hindex of 12, co-authored 27 publications receiving 825 citations.
Papers
More filters
TL;DR: This study explains how link and system level simulations are connected and shows how the link level simulator serves as a reference to design the system level simulator, and compares the accuracy of the PHY modeling at system level by means of simulations performed both with bit-accurate link level simulations and PHY-model-based systemlevel simulations.
Abstract: In this article, we introduce MATLAB-based link and system level simulation environments for UMTS Long-Term Evolution (LTE). The source codes of both simulators are available under an academic non-commercial use license, allowing researchers full access to standard-compliant simulation environments. Owing to the open source availability, the simulators enable reproducible research in wireless communications and comparison of novel algorithms. In this study, we explain how link and system level simulations are connected and show how the link level simulator serves as a reference to design the system level simulator. We compare the accuracy of the PHY modeling at system level by means of simulations performed both with bit-accurate link level simulations and PHY-model-based system level simulations. We highlight some of the currently most interesting research questions for LTE, and explain by some research examples how our simulators can be applied.
292 citations
TL;DR: A standard-compliant opensource simulation platform for LTE that enables reproducible research in a well-defined environment is developed and it is demonstrated that innovative research under the confined framework of a real-world standard is possible, sometimes even encouraged.
Abstract: Cellular networks are currently experiencing a tremendous growth of data traffic. To cope with this demand, a close cooperation between academic researchers and industry/standardization experts is necessary, which hardly exists in practice. In this paper, we try to bridge this gap between researchers and engineers by providing a review of current standard-related research efforts in wireless communication systems. Furthermore, we give an overview about our attempt in facilitating the exchange of information and results between researchers and engineers, via a common simulation platform for 3GPP long term evolution (LTE) and a corresponding webforum for discussion. Often, especially in signal processing, reproducing results of other researcher is a tedious task, because assumptions and parameters are not clearly specified, which hamper the consideration of the state-of-the-art research in the standardization process. Also, practical constraints, impairments imposed by technological restrictions and well-known physical phenomena, e.g., signaling overhead, synchronization issues, channel fading, are often disregarded by researchers, because of simplicity and mathematical tractability. Hence, evaluating the relevance of research results under practical conditions is often difficult. To circumvent these problems, we developed a standard-compliant opensource simulation platform for LTE that enables reproducible research in a well-defined environment. We demonstrate that innovative research under the confined framework of a real-world standard is possible, sometimes even encouraged. With examples of our research work, we investigate on the potential of several important research areas under typical practical conditions, and highlight consistencies as well as differences between theory and practice.
84 citations
Proceedings Article•
27 Apr 2011TL;DR: A channel estimation ASIC, which handles the real-time channel estimation, is presented, which boosts the throughput at feasible silicon cost by adopting a recently proposed estimation method named Approximate Linear Minimum Mean Square Error (ALMMSE).
Abstract: In this paper, hardware implementation aspects of the channel estimator in 3GPP LTE terminals are investigated. A channel estimation ASIC, which handles the real-time channel estimation, is presented. Compared to traditional correlator-based channel estimators, the channel estimator presented boosts the throughput at feasible silicon cost by adopting a recently proposed estimation method named Approximate Linear Minimum Mean Square Error (ALMMSE). In this paper, both the architecture and VLSI implementation of the estimator are elaborated. Implemented using a 65nm CMOS process, the channel estimator supports the full 20MHz bandwidth of 3GPP LTE and consumes only 49 kgates.
70 citations
TL;DR: This paper shows how to design optimal pilot-symbol patterns by maximizing an upper bound of a constrained capacity that takes channel estimation errors and Inter Carrier Interference into account, and proposes adaptive pilot-Symbol patterns that follow changing channel statistics.
Abstract: Recent standards for cellular transmission systems offer a lot of flexibility, such as the choice of transmission modes, modulation alphabets, coding rates, and precoding matrices. Despite this trend, pilot-symbol patterns in today's standards remain fixed, although such an approach is suboptimal. In this paper, we show how to design optimal pilot-symbol patterns by maximizing an upper bound of a constrained capacity that takes channel estimation errors and Inter Carrier Interference into account. Furthermore, we propose adaptive pilot-symbol patterns that follow changing channel statistics. As a proof of concept, we present throughput simulation results of two competitive systems, a transmission system compliant with the Long Term Evolution (LTE)-standard and an improved system utilizing the proposed adaptive pilot patterns. The transmission system utilizing adaptive pilot patterns outperforms an LTE-standard compliant system in all considered scenarios. The throughput gain for a single input single output system ranges between 3% and 80%. For a 4 × 4 transmission system, the performance gain is significantly higher and can reach up to 850% compared to a conventional LTE system.
54 citations
29 Apr 2010
TL;DR: An Approximate Linear Minimum Mean Square Error (ALMMSE) fast fading channel estimator for Orthogonal Frequency Division Multiplexing (OFDM) that utilizes the knowledge of the structure of the autocorrelation matrix given by the Kronecker product between the time correlation matrix and the frequency correlation matrix.
Abstract: In this paper, we present an Approximate Linear Minimum Mean Square Error (ALMMSE) fast fading channel estimator for Orthogonal Frequency Division Multiplexing (OFDM). The ALMMSE channel estimator utilizes the knowledge of the structure of the autocorrelation matrix given by the Kronecker product between the time correlation matrix and the frequency correlation matrix. We separate the Linear Minimum Mean Square Error (LMMSE) filtering matrix into two matrices corresponding to individual filtering in frequency and time. The eigenvalues of these two matrices are rank-one approximated by the eigenvalues of the LMMSE filtering matrix. The complexity of the ALMMSE estimator can be scaled by varying the number of the considered number of eigenvalues. Simulation results show that the proposed ALMMSE channel estimator looses only 0.1 dB compared to the LMMSE channel estimator in realistic scenarios.
51 citations
Cited by
More filters
Abstract: Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given \sinr, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.
1,640 citations
01 Jan 2007
TL;DR: In this paper, the authors provide updates to IEEE 802.16's MIB for the MAC, PHY and asso-ciated management procedures in order to accommodate recent extensions to the standard.
Abstract: This document provides updates to IEEE Std 802.16's MIB for the MAC, PHY and asso- ciated management procedures in order to accommodate recent extensions to the standard.
1,481 citations
16 May 2010
TL;DR: A MATLAB computationally efficient LTE system level simulator capable of evaluating the performance of the Downlink Shared Channel of LTE SISO and MIMO networks using Open Loop Spatial Multiplexing and Transmission Diversity transmit modes is presented.
Abstract: In order to evaluate the performance of new mobile network technologies, system level simulations are crucial. They aim at determining whether, and at which level predicted link level gains impact network performance. In this paper we present a MATLAB computationally efficient LTE system level simulator. The simulator is offered for free under an academic, noncommercial use license, a first to the authors' knowledge. The simulator is capable of evaluating the performance of the Downlink Shared Channel of LTE SISO and MIMO networks using Open Loop Spatial Multiplexing and Transmission Diversity transmit modes. The physical layer model is based on the postequalization SINR and provides the simulation pre-calculated "fading parameters" representing each of the individual interference terms. This structure allows the fading parameters to be pregenerated offline, vastly reducing computational complexity at run-time.
578 citations
TL;DR: A spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead.
Abstract: This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a nonorthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. In addition, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the nonorthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer–Rao lower bound of the proposed scheme, which enlightens us to design the nonorthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.
423 citations