scispace - formally typeset
Search or ask a question
Author

Michale S. Fee

Other affiliations: Stanford University, Agere Systems, Max Planck Society  ...read more
Bio: Michale S. Fee is an academic researcher from McGovern Institute for Brain Research. The author has contributed to research in topics: Songbird & Zebra finch. The author has an hindex of 50, co-authored 93 publications receiving 9887 citations. Previous affiliations of Michale S. Fee include Stanford University & Agere Systems.


Papers
More filters
Journal ArticleDOI
05 Sep 2002-Nature
TL;DR: It is suggested that at each time in the RA sequence, the ensemble of active RA neurons is driven by a subpopulation of RA-projecting HVC neurons that is active only at that time, which eliminates the problem of temporal interference during sequence generation and learning attributed to more distributed representations.
Abstract: Sequences of motor activity are encoded in many vertebrate brains by complex spatio-temporal patterns of neural activity; however, the neural circuit mechanisms underlying the generation of these pre-motor patterns are poorly understood. In songbirds, one prominent site of pre-motor activity is the forebrain robust nucleus of the archistriatum (RA), which generates stereotyped sequences of spike bursts during song and recapitulates these sequences during sleep. We show that the stereotyped sequences in RA are driven from nucleus HVC (high vocal centre), the principal pre-motor input to RA. Recordings of identified HVC neurons in sleeping and singing birds show that individual HVC neurons projecting onto RA neurons produce bursts sparsely, at a single, precise time during the RA sequence. These HVC neurons burst sequentially with respect to one another. We suggest that at each time in the RA sequence, the ensemble of active RA neurons is driven by a subpopulation of RA-projecting HVC neurons that is active only at that time. As a population, these HVC neurons may form an explicit representation of time in the sequence. Such a sparse representation, a temporal analogue of the 'grandmother cell' concept for object recognition, eliminates the problem of temporal interference during sequence generation and learning attributed to more distributed representations.

922 citations

Journal ArticleDOI
27 Sep 2001-Neuron
TL;DR: This work extends two-photon imaging from anesthetized, head-stabilized to awake, freely moving animals by using a miniaturized head-mounted microscope and readily obtained images of vasculature filled with fluorescently labeled blood and of layer 2/3 pyramidal neurons filled with a calcium indicator.

610 citations

Journal ArticleDOI
TL;DR: The results establish that, in the juvenile songbird, the exploratory motor behavior required to learn a complex motor sequence is dependent on a dedicated neural circuit homologous to cortico-basal ganglia circuits in mammals.
Abstract: Songbirds learn their songs by trial-and-error experimentation, producing highly variable vocal output as juveniles. By comparing their own sounds to the song of a tutor, young songbirds gradually converge to a stable song that can be a remarkably good copy of the tutor song. Here we show that vocal variability in the learning songbird is induced by a basal-ganglia-related circuit, the output of which projects to the motor pathway via the lateral magnocellular nucleus of the nidopallium (LMAN). We found that pharmacological inactivation of LMAN dramatically reduced acoustic and sequence variability in the songs of juvenile zebra finches, doing so in a rapid and reversible manner. In addition, recordings from LMAN neurons projecting to the motor pathway revealed highly variable spiking activity across song renditions, showing that LMAN may act as a source of variability. Lastly, pharmacological blockade of synaptic inputs from LMAN to its target premotor area also reduced song variability. Our results establish that, in the juvenile songbird, the exploratory motor behavior required to learn a complex motor sequence is dependent on a dedicated neural circuit homologous to cortico-basal ganglia circuits in mammals.

508 citations

Journal ArticleDOI
TL;DR: The amplifier appears to be the lowest power and most energy-efficient neural recording amplifier reported to date and the low-noise design techniques that help the neural amplifier achieve input-referred noise that is near the theoretical limit of any amplifier using a differential pair as an input stage.
Abstract: This paper describes an ultralow-power neural recording amplifier. The amplifier appears to be the lowest power and most energy-efficient neural recording amplifier reported to date. We describe low-noise design techniques that help the neural amplifier achieve input-referred noise that is near the theoretical limit of any amplifier using a differential pair as an input stage. Since neural amplifiers must include differential input pairs in practice to allow robust rejection of common-mode and power supply noise, our design appears to be near the optimum allowed by theory. The bandwidth of the amplifier can be adjusted for recording either neural spikes or local field potentials (LFPs). When configured for recording neural spikes, the amplifier yielded a midband gain of 40.8 dB and a -3-dB bandwidth from 45 Hz to 5.32 kHz; the amplifier's input-referred noise was measured to be 3.06 muVrms while consuming 7.56 muW of power from a 2.8-V supply corresponding to a noise efficiency factor (NEF) of 2.67 with the theoretical limit being 2.02. When configured for recording LFPs, the amplifier achieved a midband gain of 40.9 dB and a -3-dB bandwidth from 392 mHz to 295 Hz; the input-referred noise was 1.66 muVrms while consuming 2.08 muW from a 2.8-V supply corresponding to an NEF of 3.21. The amplifier was fabricated in AMI's 0.5-mum CMOS process and occupies 0.16 mm2 of chip area. We obtained successful recordings of action potentials from the robust nucleus of the arcopallium (RA) of an anesthesized zebra finch brain with the amplifier. Our experimental measurements of the amplifier's performance including its noise were in good accord with theory and circuit simulations.

463 citations

Journal ArticleDOI
13 Nov 2008-Nature
TL;DR: Local manipulation of brain temperature should be broadly applicable to the identification of neural circuitry that controls the timing of behavioural sequences and, more generally, to the study of the origin and role of oscillatory and other forms of brain dynamics in neural systems.
Abstract: Many complex behaviours, like speech or music, have a hierarchical organization with structure on many timescales, but it is not known how the brain controls the timing of behavioural sequences, or whether different circuits control different timescales of the behaviour. Here we address these issues by using temperature to manipulate the biophysical dynamics in different regions of the songbird forebrain involved in song production. We find that cooling the premotor nucleus HVC (formerly known as the high vocal centre) slows song speed across all timescales by up to 45 per cent but only slightly alters the acoustic structure, whereas cooling the downstream motor nucleus RA (robust nucleus of the arcopallium) has no observable effect on song timing. Our observations suggest that dynamics within HVC are involved in the control of song timing, perhaps through a chain-like organization. Local manipulation of brain temperature should be broadly applicable to the identification of neural circuitry that controls the timing of behavioural sequences and, more generally, to the study of the origin and role of oscillatory and other forms of brain dynamics in neural systems.

460 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Ed S. Lein1, Michael Hawrylycz1, Nancy Ao2, Mikael Ayres1, Amy Bensinger1, Amy Bernard1, Andrew F. Boe1, Mark S. Boguski3, Mark S. Boguski1, Kevin S. Brockway1, Emi J. Byrnes1, Lin Chen1, Li Chen2, Tsuey-Ming Chen2, Mei Chi Chin1, Jimmy Chong1, Brian E. Crook1, Aneta Czaplinska2, Chinh Dang1, Suvro Datta1, Nick Dee1, Aimee L. Desaki1, Tsega Desta1, Ellen Diep1, Tim A. Dolbeare1, Matthew J. Donelan1, Hong-Wei Dong1, Jennifer G. Dougherty1, Ben J. Duncan1, Amanda Ebbert1, Gregor Eichele4, Lili K. Estin1, Casey Faber1, Benjamin A.C. Facer1, Rick Fields2, Shanna R. Fischer1, Tim P. Fliss1, Cliff Frensley1, Sabrina N. Gates1, Katie J. Glattfelder1, Kevin R. Halverson1, Matthew R. Hart1, John G. Hohmann1, Maureen P. Howell1, Darren P. Jeung1, Rebecca A. Johnson1, Patrick T. Karr1, Reena Kawal1, Jolene Kidney1, Rachel H. Knapik1, Chihchau L. Kuan1, James H. Lake1, Annabel R. Laramee1, Kirk D. Larsen1, Christopher Lau1, Tracy Lemon1, Agnes J. Liang2, Ying Liu2, Lon T. Luong1, Jesse Michaels1, Judith J. Morgan1, Rebecca J. Morgan1, Marty Mortrud1, Nerick Mosqueda1, Lydia Ng1, Randy Ng1, Geralyn J. Orta1, Caroline C. Overly1, Tu H. Pak1, Sheana Parry1, Sayan Dev Pathak1, Owen C. Pearson1, Ralph B. Puchalski1, Zackery L. Riley1, Hannah R. Rockett1, Stephen A. Rowland1, Joshua J. Royall1, Marcos J. Ruiz2, Nadia R. Sarno1, Katherine Schaffnit1, Nadiya V. Shapovalova1, Taz Sivisay1, Clifford R. Slaughterbeck1, Simon Smith1, Kimberly A. Smith1, Bryan I. Smith1, Andy J. Sodt1, Nick N. Stewart1, Kenda-Ruth Stumpf1, Susan M. Sunkin1, Madhavi Sutram1, Angelene Tam2, Carey D. Teemer1, Christina Thaller2, Carol L. Thompson1, Lee R. Varnam1, Axel Visel4, Axel Visel5, Ray M. Whitlock1, Paul Wohnoutka1, Crissa K. Wolkey1, Victoria Y. Wong1, Matthew J.A. Wood2, Murat B. Yaylaoglu2, Rob Young1, Brian L. Youngstrom1, Xu Feng Yuan1, Bin Zhang2, Theresa A. Zwingman1, Allan R. Jones1 
11 Jan 2007-Nature
TL;DR: An anatomically comprehensive digital atlas containing the expression patterns of ∼20,000 genes in the adult mouse brain is described, providing an open, primary data resource for a wide variety of further studies concerning brain organization and function.
Abstract: Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive digital atlas containing the expression patterns of approximately 20,000 genes in the adult mouse brain. Data were generated using automated high-throughput procedures for in situ hybridization and data acquisition, and are publicly accessible online. Newly developed image-based informatics tools allow global genome-scale structural analysis and cross-correlation, as well as identification of regionally enriched genes. Unbiased fine-resolution analysis has identified highly specific cellular markers as well as extensive evidence of cellular heterogeneity not evident in classical neuroanatomical atlases. This highly standardized atlas provides an open, primary data resource for a wide variety of further studies concerning brain organization and function.

4,944 citations

Journal ArticleDOI
TL;DR: Fundamental concepts of nonlinear microscopy are reviewed and conditions relevant for achieving large imaging depths in intact tissue are discussed.
Abstract: With few exceptions biological tissues strongly scatter light, making high-resolution deep imaging impossible for traditional⎯including confocal⎯fluorescence microscopy. Nonlinear optical microscopy, in particular two photon–excited fluorescence microscopy, has overcome this limitation, providing large depth penetration mainly because even multiply scattered signal photons can be assigned to their origin as the result of localized nonlinear signal generation. Two-photon microscopy thus allows cellular imaging several hundred microns deep in various organs of living animals. Here we review fundamental concepts of nonlinear microscopy and discuss conditions relevant for achieving large imaging depths in intact tissue.

3,781 citations

Journal ArticleDOI
TL;DR: The 2010 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use is presented in this article.
Abstract: This paper gives the 2010 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. The 2010 adjustment takes into account the data considered in the 2006 adjustment as well as the data that became available from 1 January 2007, after the closing date of that adjustment, until 31 December 2010, the closing date of the new adjustment. Further, it describes in detail the adjustment of the values of the constants, including the selection of the final set of input data based on the results of least-squares analyses. The 2010 set replaces the previously recommended 2006 CODATA set and may also be found on the World Wide Web at physics.nist.gov/constants.

2,770 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations