scispace - formally typeset
Search or ask a question
Author

Michel Declercq

Other affiliations: École Polytechnique
Bio: Michel Declercq is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: CMOS & Logic gate. The author has an hindex of 29, co-authored 140 publications receiving 3262 citations. Previous affiliations of Michel Declercq include École Polytechnique.
Topics: CMOS, Logic gate, Transistor, MOSFET, Low voltage


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a charge pump cell is used to make a voltage doubler using improved serial switches and a complete power efficiency theory is presented which fits the measurements, and the importance of capacitors is shown with plots of power efficiency versus load and stray capacitors.
Abstract: A charge pump cell is used to make a voltage doubler using improved serial switches. A complete power efficiency theory is presented which fits the measurements. The importance of capacitors is shown with plots of power efficiency versus load and stray capacitors. Several problems arising at low voltage or high frequency are developed and some optimizations are presented. The substrate current is totally suppressed by the technique of bulk commutation. A power efficiency of 95% has been reached using external capacitors. A fully integrated charge pump is also presented and shows a maximum power efficiency of 75%.

468 citations

Journal ArticleDOI
TL;DR: This paper presents a fully integrated remotely powered and addressable radio frequency identification (RFID) transponder working at 2.45 GHz with state-of-the-art rectifier design achieving 37% of global efficiency.
Abstract: This paper presents a fully integrated remotely powered and addressable radio frequency identification (RFID) transponder working at 2.45 GHz. The achieved operating range at 4 W effective isotropically radiated power (EIRP) base-station transmit power is 12 m. The integrated circuit (IC) is implemented in a 0.5 /spl mu/m silicon-on-sapphire technology. A state-of-the-art rectifier design achieving 37% of global efficiency is embedded to supply energy to the transponder. The necessary input power to operate the transponder is about 2.7 /spl mu/W. Reader to transponder communication is obtained using on-off keying (OOK) modulation while transponder to reader communication is ensured using the amplitude shift keying (ASK) backscattering modulation technique. Inductive matching between the antenna and the transponder IC is used to further optimize the operating range.

366 citations

Journal ArticleDOI
TL;DR: A linear two-port model for an N-stage modified-Greinacher full-wave rectifier that predicts the overall conversion efficiency at low power levels where the diodes are operating near their threshold voltage is proposed.
Abstract: This paper proposes a linear two-port model for an N-stage modified-Greinacher full-wave rectifier. It predicts the overall conversion efficiency at low power levels where the diodes are operating near their threshold voltage. The output electrical behavior of the rectifier is calculated as a function of the received power and the antenna parameters. Moreover, the two-port parameter values are computed for particular input voltages and output currents for the complete N-stage rectifier circuit using only the measured I-V and C-V characteristics of a single diode. To validate the model a three-stage modified-Greinacher full-wave rectifier was realized in an silicon-on-sapphire (SOS) CMOS 0.5-/spl mu/m technology. The measurements are in excellent agreement with the values calculated using the presented model.

190 citations

Journal ArticleDOI
TL;DR: In this paper, a low power and lowvoltage super-regenerative receiver operating at 1 GHz and implemented in a 0.35-/spl mu/m CMOS process is described.
Abstract: A low-power and low-voltage super-regenerative receiver operating at 1 GHz and implemented in a 0.35-/spl mu/m CMOS process is described. The receiver includes a low-noise amplifier, a super-regenerative oscillator, an envelope detector, an AGC circuit with sample/hold function, and a baseband amplifier. The die surface is equal to 0.25 mm/sup 2/. The power consumption is less than 1.2 mW at V/sub DD/=1.5 V. A 100-kHz sawtooth quench signal is used to achieve a rejection of -36 dB at 500 KHz from the central frequency.

139 citations

Proceedings ArticleDOI
09 Jun 1997
TL;DR: A new encoding scheme for high-speed flash analog to digital converters using a Wallace tree provides a global error filtering and its regular topology optimises the signal propagation.
Abstract: A new encoding scheme for high-speed flash analog to digital converters using a Wallace tree is described. It provides a global error filtering and its regular topology optimises the signal propagation. Its application to a 5-bit 1.4-GHz Gallium Arsenide analog-to-digital converter is described.

122 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
25 Oct 2010
TL;DR: This review introduces and summarizes progress in the development of the tunnel field- effect transistors (TFETs) including its origin, current experimental and theoretical performance relative to the metal-oxide-semiconductor field-effect transistor (MOSFET), basic current-transport theory, design tradeoffs, and fundamental challenges.
Abstract: Steep subthreshold swing transistors based on interband tunneling are examined toward extending the performance of electronics systems. In particular, this review introduces and summarizes progress in the development of the tunnel field-effect transistors (TFETs) including its origin, current experimental and theoretical performance relative to the metal-oxide-semiconductor field-effect transistor (MOSFET), basic current-transport theory, design tradeoffs, and fundamental challenges. The promise of the TFET is in its ability to provide higher drive current than the MOSFET as supply voltages approach 0.1 V.

1,389 citations

Ovidiu Vermesan1, Peter Friess
30 Jun 2013
TL;DR: The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level.
Abstract: The book aims to provide a broad overview of various topics of the Internet of Things (IoT) from the research and development priorities to enabling technologies, architecture, security, privacy, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC ? Internet of Things European Research Cluster from technology to international cooperation and the global "state of play". The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level.

767 citations

Journal ArticleDOI
TL;DR: An RF-DC power conversion system is designed to efficiently convert far-field RF energy to DC voltages at very low received power and voltages and is ideal for use in passively powered sensor networks.
Abstract: An RF-DC power conversion system is designed to efficiently convert far-field RF energy to DC voltages at very low received power and voltages. Passive rectifier circuits are designed in a 0.25 mum CMOS technology using floating gate transistors as rectifying diodes. The 36-stage rectifier can rectify input voltages as low as 50 mV with a voltage gain of 6.4 and operates with received power as low as 5.5 muW(22.6 dBm). Optimized for far field, the circuit operates at a distance of 44 m from a 4 W EIRP source. The high voltage range achieved at low load current make it ideal for use in passively powered sensor networks.

766 citations

Journal ArticleDOI
TL;DR: The idea of wireless power transfer (WPT) has been around since the inception of electricity and Nikola Tesla described the freedom to transfer energy between two points without the need for a physical connection to a power source as an?all-surpassing importance to man? as discussed by the authors.
Abstract: The idea of wireless power transfer (WPT) has been around since the inception of electricity. In the late 19th century, Nikola Tesla described the freedom to transfer energy between two points without the need for a physical connection to a power source as an ?all-surpassing importance to man? [1]. A truly wireless device, capable of being remotely powered, not only allows the obvious freedom of movement but also enables devices to be more compact by removing the necessity of a large battery. Applications could leverage this reduction in size and weight to increase the feasibility of concepts such as paper-thin, flexible displays [2], contact-lens-based augmented reality [3], and smart dust [4], among traditional point-to-point power transfer applications. While several methods of wireless power have been introduced since Tesla?s work, including near-field magnetic resonance and inductive coupling, laser-based optical power transmission, and far-field RF/microwave energy transmission, only RF/microwave and laser-based systems are truly long-range methods. While optical power transmission certainly has merit, its mechanisms are outside of the scope of this article and will not be discussed.

745 citations