scispace - formally typeset
Search or ask a question
Author

Michel Gangnet

Bio: Michel Gangnet is an academic researcher from Microsoft. The author has contributed to research in topics: Interpolation & Particle filter. The author has an hindex of 13, co-authored 15 publications receiving 4777 citations.

Papers
More filters
Proceedings ArticleDOI
01 Jul 2003
TL;DR: Using generic interpolation machinery based on solving Poisson equations, a variety of novel tools are introduced for seamless editing of image regions, which permits the seamless importation of both opaque and transparent source image regions into a destination region.
Abstract: Using generic interpolation machinery based on solving Poisson equations, a variety of novel tools are introduced for seamless editing of image regions. The first set of tools permits the seamless importation of both opaque and transparent source image regions into a destination region. The second set is based on similar mathematical ideas and allows the user to modify the appearance of the image seamlessly, within a selected region. These changes can be arranged to affect the texture, the illumination, and the color of objects lying in the region, or to make tileable a rectangular selection.

2,770 citations

Book ChapterDOI
28 May 2002
TL;DR: This work introduces a new Monte Carlo tracking technique based on the same principle of color histogram distance, but within a probabilistic framework, and introduces the following ingredients: multi-part color modeling to capture a rough spatial layout ignored by global histograms, incorporation of a background color model when relevant, and extension to multiple objects.
Abstract: Color-based trackers recently proposed in [3,4,5] have been proved robust and versatile for a modest computational cost They are especially appealing for tracking tasks where the spatial structure of the tracked objects exhibits such a dramatic variability that trackers based on a space-dependent appearance reference would break down very fast Trackers in [3,4,5] rely on the deterministic search of a window whose color content matches a reference histogram color modelRelying on the same principle of color histogram distance, but within a probabilistic framework, we introduce a new Monte Carlo tracking technique The use of a particle filter allows us to better handle color clutter in the background, as well as complete occlusion of the tracked entities over a few framesThis probabilistic approach is very flexible and can be extended in a number of useful ways In particular, we introduce the following ingredients: multi-part color modeling to capture a rough spatial layout ignored by global histograms, incorporation of a background color model when relevant, and extension to multiple objects

1,549 citations

Proceedings ArticleDOI
07 Jul 2001
TL;DR: A sequential Monte-Carlo technique, termed JetStream, is proposed that enables constraints on curvature, corners, and contour parallelism to be mobilized, all of which are infeasible under exact optimization.
Abstract: The problem of extracting continuous structures from noisy or cluttered images is a difficult one. Successful extraction depends critically on the ability to balance prior constraints on continuity and smoothness against evidence garnered from image analysis. Exact, deterministic optimisation algorithms, based on discretized functionals, suffer from severe limitations on the form of prior constraint that can be imposed tractably. This paper proposes a sequential Monte-Carlo technique, termed JetStream, that enables constraints on curvature, corners, and contour parallelism. To be mobilized, all of which are infeasible under exact optimization. The power of JetStream is demonstrated in two contexts: (1) interactive cut-out in photo-editing applications, and (2) the recovery of roads in aerial photographs.

137 citations

Proceedings ArticleDOI
07 Jul 2001
TL;DR: Stereo sound and vision can indeed be fused effectively, to make a system more capable than with either modality on its own, using generative probabilistic models and particle filtering.
Abstract: Video telephony could be considerably enhanced by provision of a tracking system that allows freedom of movement to the speaker while maintaining a well-framed image, for transmission over limited bandwidth. Already commercial multi-microphone systems exist which track speaker direction in order to reject background noise. Stereo sound and vision are complementary modalities in that sound is good for initialisation (where vision is expensive) whereas vision is good for localisation (where sound is less precise). Using generative probabilistic models and particle filtering, we show that stereo sound and vision can indeed be fused effectively, to make a system more capable than with either modality on its own.

122 citations

Book ChapterDOI
28 May 2002
TL;DR: The approach proposed here is to adapt selectively, allowing adaptation only during periods when two particular conditions are met: that the object should be both present and in motion.
Abstract: An important issue in tracking is how to incorporate an appropriate degree of adaptivity into the observation model. Without any adaptivity, tracking fails when object properties change, for example when illumination changes affect surface colour. Conversely, if an observation model adapts too readily then, during some transient failure of tracking, it is liable to adapt erroneously to some part of the background. The approach proposed here is to adapt selectively, allowing adaptation only during periods when two particular conditions are met: that the object should be both present and in motion. The proposed mechanism for adaptivity is tested here with a foreground colour and motion model. The experimental setting itself is novel in that it uses combined colour and motion observations from a fixed filter bank, with motion used also for initialisation via a Monte Carlo proposal distribution. Adaptation is performed using a stochastic EM algorithm, during periods that meet the conditions above. Tests verify the value of such adaptivity, in that immunity to distraction from clutter of similar colour to the object is considerably enhanced.

96 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed, which employs a metric derived from the Bhattacharyya coefficient as similarity measure, and uses the mean shift procedure to perform the optimization.
Abstract: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram-based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples, the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only a few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking.

4,996 citations

Journal ArticleDOI
TL;DR: The guided filter is a novel explicit image filter derived from a local linear model that can be used as an edge-preserving smoothing operator like the popular bilateral filter, but it has better behaviors near edges.
Abstract: In this paper, we propose a novel explicit image filter called guided filter. Derived from a local linear model, the guided filter computes the filtering output by considering the content of a guidance image, which can be the input image itself or another different image. The guided filter can be used as an edge-preserving smoothing operator like the popular bilateral filter [1], but it has better behaviors near edges. The guided filter is also a more generic concept beyond smoothing: It can transfer the structures of the guidance image to the filtering output, enabling new filtering applications like dehazing and guided feathering. Moreover, the guided filter naturally has a fast and nonapproximate linear time algorithm, regardless of the kernel size and the intensity range. Currently, it is one of the fastest edge-preserving filters. Experiments show that the guided filter is both effective and efficient in a great variety of computer vision and computer graphics applications, including edge-aware smoothing, detail enhancement, HDR compression, image matting/feathering, dehazing, joint upsampling, etc.

4,730 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Proceedings ArticleDOI
23 Jun 2013
TL;DR: Large scale experiments are carried out with various evaluation criteria to identify effective approaches for robust tracking and provide potential future research directions in this field.
Abstract: Object tracking is one of the most important components in numerous applications of computer vision. While much progress has been made in recent years with efforts on sharing code and datasets, it is of great importance to develop a library and benchmark to gauge the state of the art. After briefly reviewing recent advances of online object tracking, we carry out large scale experiments with various evaluation criteria to understand how these algorithms perform. The test image sequences are annotated with different attributes for performance evaluation and analysis. By analyzing quantitative results, we identify effective approaches for robust tracking and provide potential future research directions in this field.

3,828 citations

Journal ArticleDOI
TL;DR: An extensive evaluation of the state-of-the-art online object-tracking algorithms with various evaluation criteria is carried out to identify effective approaches for robust tracking and provide potential future research directions in this field.
Abstract: Object tracking has been one of the most important and active research areas in the field of computer vision. A large number of tracking algorithms have been proposed in recent years with demonstrated success. However, the set of sequences used for evaluation is often not sufficient or is sometimes biased for certain types of algorithms. Many datasets do not have common ground-truth object positions or extents, and this makes comparisons among the reported quantitative results difficult. In addition, the initial conditions or parameters of the evaluated tracking algorithms are not the same, and thus, the quantitative results reported in literature are incomparable or sometimes contradictory. To address these issues, we carry out an extensive evaluation of the state-of-the-art online object-tracking algorithms with various evaluation criteria to understand how these methods perform within the same framework. In this work, we first construct a large dataset with ground-truth object positions and extents for tracking and introduce the sequence attributes for the performance analysis. Second, we integrate most of the publicly available trackers into one code library with uniform input and output formats to facilitate large-scale performance evaluation. Third, we extensively evaluate the performance of 31 algorithms on 100 sequences with different initialization settings. By analyzing the quantitative results, we identify effective approaches for robust tracking and provide potential future research directions in this field.

2,974 citations