scispace - formally typeset
Search or ask a question
Author

Michel Gerboles

Bio: Michel Gerboles is an academic researcher. The author has contributed to research in topics: Air quality index & Software deployment. The author has an hindex of 15, co-authored 23 publications receiving 1202 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the performances of several field calibration methods for low-cost sensors, including linear/multi linear regression and supervised learning techniques are compared, and the accuracy of the predicted values was evaluated for about five months using a few indicators and techniques: orthogonal regression, target diagram, measurement uncertainty and drifts over time of sensor predictions.
Abstract: The performances of several field calibration methods for low-cost sensors, including linear/multi linear regression and supervised learning techniques are compared. A cluster of ozone, nitrogen dioxide, nitrogen monoxide, carbon monoxide and carbon dioxide sensors was operated. The sensors were either of metal oxide or electrochemical type or based on miniaturized infra-red cell. For each method, a two-week calibration was carried out at a semi-rural site against reference measurements. Subsequently, the accuracy of the predicted values was evaluated for about five months using a few indicators and techniques: orthogonal regression, target diagram, measurement uncertainty and drifts over time of sensor predictions. The study assessed if the sensors were could reach the Data Quality Objective (DQOs) of the European Air Quality Directive for indicative methods (between 25 and 30% of uncertainty for O 3 and NO 2 ). In this study it appears that O 3 may be calibrated using simple regression techniques while for NO 2 a better agreement between sensors and reference measurements was reached using supervised learning techniques. The hourly O 3 DQO was met while it was unlikely that NO 2 hourly one could be met. This was likely caused by the low NO 2 levels correlated with high O 3 levels that are typical of semi-rural site where the measurements of this study took place.

335 citations

Journal ArticleDOI
28 Jun 2017-Sensors
TL;DR: A literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays.
Abstract: This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.

275 citations

Journal ArticleDOI
TL;DR: In this paper, the performances of several field calibration methods for low-cost sensors, including linear/multi linear regression and supervised learning techniques, are compared and the accuracy of each regression method was evaluated on a five months field experiment at a semi-rural site using different indicators and techniques.
Abstract: In this work the performances of several field calibration methods for low-cost sensors, including linear/multi linear regression and supervised learning techniques, are compared. A cluster of either metal oxide or electrochemical sensors for nitrogen monoxide and carbon monoxide together with miniaturized infra-red carbon dioxide sensors was operated. Calibration was carried out during the two first weeks of evaluation against reference measurements. The accuracy of each regression method was evaluated on a five months field experiment at a semi-rural site using different indicators and techniques: orthogonal regression, target diagram, measurement uncertainty and drifts over time of sensor predictions. In addition to the analyses for ozone and nitrogen oxide already published in Part A [1], this work assessed if carbon monoxide sensors can reach the Data Quality Objective (DQOs) of 25% of uncertainty set in the European Air Quality Directive for indicative methods. As for ozone and nitrogen oxide, it was found for NO, CO and CO 2 that the best agreement between sensors and reference measurements was observed for supervised learning techniques compared to linear and multilinear regression.

256 citations

Journal ArticleDOI
TL;DR: In this article, quantitative data regarding the performance of low-cost sensors (LCS) against reference measurement are presented. And the authors highlight the possibility to have versatile LCS able to operate with multiple pollutants and preferably with transparent LCS data treatment.
Abstract: A growing number of companies have started commercializing low-cost sensors (LCS) that are said to be able to monitor air pollution in outdoor air. The benefit of the use of LCS is the increased spatial coverage when monitoring air quality in cities and remote locations. Today, there are hundreds of LCS commercially available on the market with costs ranging from several hundred to several thousand euro. At the same time, the scientific literature currently reports independent evaluation of the performance of LCS against reference measurements for about 110 LCS. These studies report that LCS are unstable and often affected by atmospheric conditions—cross-sensitivities from interfering compounds that may change LCS performance depending on site location. In this work, quantitative data regarding the performance of LCS against reference measurement are presented. This information was gathered from published reports and relevant testing laboratories. Other information was drawn from peer-reviewed journals that tested different types of LCS in research studies. Relevant metrics about the comparison of LCS systems against reference systems highlighted the most cost-effective LCS that could be used to monitor air quality pollutants with a good level of agreement represented by a coefficient of determination R2 > 0.75 and slope close to 1.0. This review highlights the possibility to have versatile LCS able to operate with multiple pollutants and preferably with transparent LCS data treatment.

187 citations

Journal Article
TL;DR: This work reviews the literature on commercial sensors for ambient gas measurements over a hundred commercial sensors and compares their performance with the specifications of the European Directive on air quality 2008/50/EC.
Abstract: The traditional ambient gases monitor stations are expensive, big and of complex operation. So they are not suitable for a network of sensors that cover large areas. To cover large areas these traditional systems algorithms usually interpolates the measurements to calculate the gas concentrations in points far away of the physical sensors. Small commercial sensors represent a big opportunity for making sensor networks that monitor the ambient gases within large areas without the necessity of interpolation. There have been some successful previous works on these sensor networks with custom sensors and with commercial sensors but the information and characteristics of these sensors is difficult to compile and compare. In this work we review the literature on commercial sensors for ambient gas measurements over a hundred commercial sensors and compare their performance with the specifications of the European Directive on air quality 2008/50/EC.

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This study aims to serve as a useful manual of existing security threats and vulnerabilities of the IoT heterogeneous environment and proposes possible solutions for improving the IoT security architecture.

889 citations

Journal ArticleDOI
TL;DR: An exhaustive evaluation of 24 identical units of a commercial low-cost sensor platform against CEN (European Standardization Organization) reference analyzers, evaluating their measurement capability over time and a range of environmental conditions shows that their performance varies spatially and temporally.

607 citations

Journal ArticleDOI
TL;DR: Wearable health care devices, with the help of improved technology, have been developed greatly and are considered reliable tools for long-term health monitoring systems.
Abstract: Objectives Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. Methods MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Results Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Conclusions Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization.

525 citations

Journal ArticleDOI
TL;DR: Over the past decade, a range of sensor technologies became available on the market, enabling a revolutionary shift in air pollution monitoring and assessment, and it can be argued that with a significant future expansion of monitoring networks, including indoor environments, there may be less need for wearable or portable sensors/monitors to assess personal exposure.

418 citations