scispace - formally typeset
Search or ask a question
Author

Michel Jacques Counotte

Bio: Michel Jacques Counotte is an academic researcher from University of Bern. The author has contributed to research in topics: Zika virus & Outbreak. The author has an hindex of 11, co-authored 20 publications receiving 1084 citations. Previous affiliations of Michel Jacques Counotte include University of Zurich & Ghent University.

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that most people who become infected with SARS-CoV-2 will not remain asymptomatic throughout the course of the infection, and combination prevention measures will continue to be needed.
Abstract: BACKGROUND There is disagreement about the level of asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We conducted a living systematic review and meta-analysis to address three questions: (1) Amongst people who become infected with SARS-CoV-2, what proportion does not experience symptoms at all during their infection? (2) Amongst people with SARS-CoV-2 infection who are asymptomatic when diagnosed, what proportion will develop symptoms later? (3) What proportion of SARS-CoV-2 transmission is accounted for by people who are either asymptomatic throughout infection or presymptomatic? METHODS AND FINDINGS We searched PubMed, Embase, bioRxiv, and medRxiv using a database of SARS-CoV-2 literature that is updated daily, on 25 March 2020, 20 April 2020, and 10 June 2020. Studies of people with SARS-CoV-2 diagnosed by reverse transcriptase PCR (RT-PCR) that documented follow-up and symptom status at the beginning and end of follow-up or modelling studies were included. One reviewer extracted data and a second verified the extraction, with disagreement resolved by discussion or a third reviewer. Risk of bias in empirical studies was assessed with an adapted checklist for case series, and the relevance and credibility of modelling studies were assessed using a published checklist. We included a total of 94 studies. The overall estimate of the proportion of people who become infected with SARS-CoV-2 and remain asymptomatic throughout infection was 20% (95% confidence interval [CI] 17-25) with a prediction interval of 3%-67% in 79 studies that addressed this review question. There was some evidence that biases in the selection of participants influence the estimate. In seven studies of defined populations screened for SARS-CoV-2 and then followed, 31% (95% CI 26%-37%, prediction interval 24%-38%) remained asymptomatic. The proportion of people that is presymptomatic could not be summarised, owing to heterogeneity. The secondary attack rate was lower in contacts of people with asymptomatic infection than those with symptomatic infection (relative risk 0.35, 95% CI 0.10-1.27). Modelling studies fit to data found a higher proportion of all SARS-CoV-2 infections resulting from transmission from presymptomatic individuals than from asymptomatic individuals. Limitations of the review include that most included studies were not designed to estimate the proportion of asymptomatic SARS-CoV-2 infections and were at risk of selection biases; we did not consider the possible impact of false negative RT-PCR results, which would underestimate the proportion of asymptomatic infections; and the database does not include all sources. CONCLUSIONS The findings of this living systematic review suggest that most people who become infected with SARS-CoV-2 will not remain asymptomatic throughout the course of the infection. The contribution of presymptomatic and asymptomatic infections to overall SARS-CoV-2 transmission means that combination prevention measures, with enhanced hand hygiene, masks, testing tracing, and isolation strategies and social distancing, will continue to be needed.

822 citations

Journal ArticleDOI
TL;DR: The age-stratified susceptible-exposed-infected-removed (SEIR) compartmental model describing the dynamics of transmission and mortality during the SARS-CoV-2 epidemic is developed and proposed, suggesting a comprehensive solution to the estimation of Sars-Cov-2 mortality from surveillance data during outbreaks.
Abstract: Background As of 16 May 2020, more than 4.5 million cases and more than 300,000 deaths from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported. Reliable estimates of mortality from SARS-CoV-2 infection are essential for understanding clinical prognosis, planning healthcare capacity, and epidemic forecasting. The case–fatality ratio (CFR), calculated from total numbers of reported cases and reported deaths, is the most commonly reported metric, but it can be a misleading measure of overall mortality. The objectives of this study were to (1) simulate the transmission dynamics of SARS-CoV-2 using publicly available surveillance data and (2) infer estimates of SARS-CoV-2 mortality adjusted for biases and examine the CFR, the symptomatic case–fatality ratio (sCFR), and the infection–fatality ratio (IFR) in different geographic locations. Method and findings We developed an age-stratified susceptible-exposed-infected-removed (SEIR) compartmental model describing the dynamics of transmission and mortality during the SARS-CoV-2 epidemic. Our model accounts for two biases: preferential ascertainment of severe cases and right-censoring of mortality. We fitted the transmission model to surveillance data from Hubei Province, China, and applied the same model to six regions in Europe: Austria, Bavaria (Germany), Baden-Wurttemberg (Germany), Lombardy (Italy), Spain, and Switzerland. In Hubei, the baseline estimates were as follows: CFR 2.4% (95% credible interval [CrI] 2.1%–2.8%), sCFR 3.7% (3.2%–4.2%), and IFR 2.9% (2.4%–3.5%). Estimated measures of mortality changed over time. Across the six locations in Europe, estimates of CFR varied widely. Estimates of sCFR and IFR, adjusted for bias, were more similar to each other but still showed some degree of heterogeneity. Estimates of IFR ranged from 0.5% (95% CrI 0.4%–0.6%) in Switzerland to 1.4% (1.1%–1.6%) in Lombardy, Italy. In all locations, mortality increased with age. Among individuals 80 years or older, estimates of the IFR suggest that the proportion of all those infected with SARS-CoV-2 who will die ranges from 20% (95% CrI 16%–26%) in Switzerland to 34% (95% CrI 28%–40%) in Spain. A limitation of the model is that count data by date of onset are required, and these are not available in all countries. Conclusions We propose a comprehensive solution to the estimation of SARS-Cov-2 mortality from surveillance data during outbreaks. The CFR is not a good predictor of overall mortality from SARS-CoV-2 and should not be used for evaluation of policy or comparison across settings. Geographic differences in IFR suggest that a single IFR should not be applied to all settings to estimate the total size of the SARS-CoV-2 epidemic in different countries. The sCFR and IFR, adjusted for right-censoring and preferential ascertainment of severe cases, are measures that can be used to improve and monitor clinical and public health strategies to reduce the deaths from SARS-CoV-2 infection.

129 citations

Posted ContentDOI
01 Apr 2020-medRxiv
TL;DR: An intermediate contribution of pre-symptomatic and asymptomatic infections to overall SARS-CoV-2 transmission means that combination prevention, with enhanced hand and respiratory hygiene, testing tracing and isolation strategies and social distancing, will continue to be needed.
Abstract: BACKGROUND There is disagreement about the level of asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We conducted a living systematic review and meta-analysis to address three questions: 1. amongst people who become infected with SARS-CoV-2, what proportion does not experience symptoms at all during their infection? 2. Amongst people with SARS-CoV-2 infection who are asymptomatic when diagnosed, what proportion will develop symptoms later? 3. What proportion of SARS-CoV-2 transmission is accounted for by people who are either asymptomatic throughout infection, or pre-symptomatic? METHODS AND FINDINGS We searched PubMed, Embase, bioRxiv and medRxiv using a database of SARS-CoV-2 literature that is updated daily, on 25 March 2020, 20 April 2020 and 10 June 2020. Studies of people with SARS-CoV-2 diagnosed by reverse transcriptase PCR that documented follow-up and symptom status at the beginning and end of follow-up, or modelling studies were included. One reviewer extracted data and a second verified the extraction, with disagreement resolved by discussion or a third reviewer. Risk of bias in empirical studies was assessed with an adapted checklist for case series and the relevance and credibility of modelling studies were assessed using a published checklist. We included a total of 94 studies. The overall estimate of the proportion of people who become infected with SARS-CoV-2 and remain asymptomatic throughout infection was 20% (95% CI 17-25) with a prediction interval of 3-67% in 79 studies that addressed this review question. There was some evidence that biases in the selection of participants influence the estimate. In seven studies of defined populations screened for SARS-CoV-2 and then followed, 31% (95% CI 26-37%, prediction interval 24-38%) remained asymptomatic. The proportion of people that is pre-symptomatic could not be summarised, owing to heterogeneity. The secondary attack rate was slightly lower in contacts of people with asymptomatic infection than those with symptomatic infection (relative risk 0.35, 95% CI 0.10-1.27). Modelling studies fit to data found a higher proportion of all SARS-CoV-2 infections resulting from transmission from pre-symptomatic individuals than from asymptomatic individuals. Limitations of the review include that most included studies were not designed to estimate the proportion of asymptomatic SARS-CoV-2 infections and were at risk of selection biases, we did not consider the possible impact of false negative RT-PCR results, which would underestimate the proportion of asymptomatic infections, and that the database does not include all sources. CONCLUSIONS The findings of this living systematic review of publications early in the pandemic suggest that most SARS-CoV-2 infections are not asymptomatic throughout the course of infection. The contribution of pre-symptomatic and asymptomatic infections to overall SARS-CoV-2 transmission means that combination prevention measures, with enhanced hand hygiene, masks, testing tracing and isolation strategies and social distancing, will continue to be needed.

115 citations

Journal ArticleDOI
TL;DR: The findings suggest that the infectious period for sexual transmission of ZIKV is shorter than estimates from the earliest post-outbreak studies, which were based on reverse transcription PCR alone.
Abstract: Background Health authorities in the United States and Europe reported an increasing number of travel-associated episodes of sexual transmission of Zika virus (ZIKV) following the 2015–2017 ZIKV outbreak. This, and other scientific evidence, suggests that ZIKV is sexually transmissible in addition to having its primary mosquito-borne route. The objective of this systematic review and evidence synthesis was to clarify the epidemiology of sexually transmitted ZIKV. Methods and findings We performed a living (i.e., continually updated) systematic review of evidence published up to 15 April 2018 about sexual transmission of ZIKV and other arthropod-borne flaviviruses in humans and other animals. We defined 7 key elements of ZIKV sexual transmission for which we extracted data: (1) rectal and vaginal susceptibility to infection, (2) incubation period following sexual transmission, (3) serial interval between the onset of symptoms in a primary and secondary infected individuals, (4) duration of infectiousness, (5) reproduction number, (6) probability of transmission per sex act, and (7) transmission rate. We identified 1,227 unique publications and included 128, of which 77 presented data on humans and 51 presented data on animals. Laboratory experiments confirm that rectal and vaginal mucosae are susceptible to infection with ZIKV and that the testis serves as a reservoir for the virus in animal models. Sexual transmission was reported in 36 human couples: 34/36 of these involved male-to-female sexual transmission. The median serial symptom onset interval in 15 couples was 12 days (interquartile range: 10–14.5); the maximum was 44 days. We found evidence from 2 prospective cohorts that ZIKV RNA is present in human semen with a median duration of 34 days (95% CI: 28–41 days) and 35 days (no CI given) (low certainty of evidence, according to GRADE). Aggregated data about detection of ZIKV RNA from 37 case reports and case series indicate a median duration of detection of ZIKV of 40 days (95% CI: 30–49 days) and maximum duration of 370 days in semen. In human vaginal fluid, median duration was 14 days (95% CI: 7–20 days) and maximum duration was 37 days (very low certainty). Infectious virus in human semen was detected for a median duration of 12 days (95% CI: 1–21 days) and maximum of 69 days. Modelling studies indicate that the reproduction number is below 1 (very low certainty). Evidence was lacking to estimate the incubation period or the transmission rate. Evidence on sexual transmission of other flaviviruses was scarce. The certainty of the evidence is limited because of uncontrolled residual bias. Conclusions The living systematic review and sexual transmission framework allowed us to assess evidence about the risk of sexual transmission of ZIKV. ZIKV is more likely transmitted from men to women than from women to men. For other flaviviruses, evidence of sexual transmissibility is still absent. Taking into account all available data about the duration of detection of ZIKV in culture and from the serial interval, our findings suggest that the infectious period for sexual transmission of ZIKV is shorter than estimates from the earliest post-outbreak studies, which were based on reverse transcription PCR alone.

111 citations

Posted ContentDOI
06 Mar 2020-medRxiv
TL;DR: The age-specific case fatality ratio (CFR) among all infections was 1.6% and increased considerably for the elderly, highlighting the expected burden for populations with further expansion of the COVID-19 epidemic around the globe.
Abstract: The coronavirus disease 2019 (COVID-19) epidemic that originated in Wuhan, China has spread to more than 60 countries. We estimated the age-specific case fatality ratio (CFR) by fitting a transmission model to data from China, accounting for underreporting of cases and the time delay to death. Overall CFR among all infections was 1.6% (1.4-1.8%) and increased considerably for the elderly, highlighting the expected burden for populations with further expansion of the COVID-19 epidemic around the globe.

93 citations


Cited by
More filters
Journal ArticleDOI
14 Apr 2020-Science
TL;DR: Using existing data to build a deterministic model of multiyear interactions between existing coronaviruses, with a focus on the United States, is used to project the potential epidemic dynamics and pressures on critical care capacity over the next 5 years and projected that recurrent wintertime outbreaks of SARS-CoV-2 will probably occur after the initial, most severe pandemic wave.
Abstract: It is urgent to understand the future of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) transmission. We used estimates of seasonality, immunity, and cross-immunity for human coronavirus OC43 (HCoV-OC43) and HCoV-HKU1 using time-series data from the United States to inform a model of SARS-CoV-2 transmission. We projected that recurrent wintertime outbreaks of SARS-CoV-2 will probably occur after the initial, most severe pandemic wave. Absent other interventions, a key metric for the success of social distancing is whether critical care capacities are exceeded. To avoid this, prolonged or intermittent social distancing may be necessary into 2022. Additional interventions, including expanded critical care capacity and an effective therapeutic, would improve the success of intermittent distancing and hasten the acquisition of herd immunity. Longitudinal serological studies are urgently needed to determine the extent and duration of immunity to SARS-CoV-2. Even in the event of apparent elimination, SARS-CoV-2 surveillance should be maintained because a resurgence in contagion could be possible as late as 2024.

2,203 citations

Journal ArticleDOI
TL;DR: It is suggested that most people who become infected with SARS-CoV-2 will not remain asymptomatic throughout the course of the infection, and combination prevention measures will continue to be needed.
Abstract: BACKGROUND There is disagreement about the level of asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We conducted a living systematic review and meta-analysis to address three questions: (1) Amongst people who become infected with SARS-CoV-2, what proportion does not experience symptoms at all during their infection? (2) Amongst people with SARS-CoV-2 infection who are asymptomatic when diagnosed, what proportion will develop symptoms later? (3) What proportion of SARS-CoV-2 transmission is accounted for by people who are either asymptomatic throughout infection or presymptomatic? METHODS AND FINDINGS We searched PubMed, Embase, bioRxiv, and medRxiv using a database of SARS-CoV-2 literature that is updated daily, on 25 March 2020, 20 April 2020, and 10 June 2020. Studies of people with SARS-CoV-2 diagnosed by reverse transcriptase PCR (RT-PCR) that documented follow-up and symptom status at the beginning and end of follow-up or modelling studies were included. One reviewer extracted data and a second verified the extraction, with disagreement resolved by discussion or a third reviewer. Risk of bias in empirical studies was assessed with an adapted checklist for case series, and the relevance and credibility of modelling studies were assessed using a published checklist. We included a total of 94 studies. The overall estimate of the proportion of people who become infected with SARS-CoV-2 and remain asymptomatic throughout infection was 20% (95% confidence interval [CI] 17-25) with a prediction interval of 3%-67% in 79 studies that addressed this review question. There was some evidence that biases in the selection of participants influence the estimate. In seven studies of defined populations screened for SARS-CoV-2 and then followed, 31% (95% CI 26%-37%, prediction interval 24%-38%) remained asymptomatic. The proportion of people that is presymptomatic could not be summarised, owing to heterogeneity. The secondary attack rate was lower in contacts of people with asymptomatic infection than those with symptomatic infection (relative risk 0.35, 95% CI 0.10-1.27). Modelling studies fit to data found a higher proportion of all SARS-CoV-2 infections resulting from transmission from presymptomatic individuals than from asymptomatic individuals. Limitations of the review include that most included studies were not designed to estimate the proportion of asymptomatic SARS-CoV-2 infections and were at risk of selection biases; we did not consider the possible impact of false negative RT-PCR results, which would underestimate the proportion of asymptomatic infections; and the database does not include all sources. CONCLUSIONS The findings of this living systematic review suggest that most people who become infected with SARS-CoV-2 will not remain asymptomatic throughout the course of the infection. The contribution of presymptomatic and asymptomatic infections to overall SARS-CoV-2 transmission means that combination prevention measures, with enhanced hand hygiene, masks, testing tracing, and isolation strategies and social distancing, will continue to be needed.

822 citations

Journal ArticleDOI
04 Jan 2021
TL;DR: In this article, a decision analytical model assessed the relative amount of transmission from presymptomatic, never symptomatic, and symptomatic individuals across a range of scenarios in which the proportion of transmissions from people who never develop symptoms (i.e., remain asymptotic) and the infectious period were varied according to published best estimates.
Abstract: Importance Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiology of coronavirus disease 2019 (COVID-19), is readily transmitted person to person. Optimal control of COVID-19 depends on directing resources and health messaging to mitigation efforts that are most likely to prevent transmission, but the relative importance of such measures has been disputed. Objective To assess the proportion of SARS-CoV-2 transmissions in the community that likely occur from persons without symptoms. Design, Setting, and Participants This decision analytical model assessed the relative amount of transmission from presymptomatic, never symptomatic, and symptomatic individuals across a range of scenarios in which the proportion of transmission from people who never develop symptoms (ie, remain asymptomatic) and the infectious period were varied according to published best estimates. For all estimates, data from a meta-analysis was used to set the incubation period at a median of 5 days. The infectious period duration was maintained at 10 days, and peak infectiousness was varied between 3 and 7 days (−2 and +2 days relative to the median incubation period). The overall proportion of SARS-CoV-2 was varied between 0% and 70% to assess a wide range of possible proportions. Main Outcomes and Measures Level of transmission of SARS-CoV-2 from presymptomatic, never symptomatic, and symptomatic individuals. Results The baseline assumptions for the model were that peak infectiousness occurred at the median of symptom onset and that 30% of individuals with infection never develop symptoms and are 75% as infectious as those who do develop symptoms. Combined, these baseline assumptions imply that persons with infection who never develop symptoms may account for approximately 24% of all transmission. In this base case, 59% of all transmission came from asymptomatic transmission, comprising 35% from presymptomatic individuals and 24% from individuals who never develop symptoms. Under a broad range of values for each of these assumptions, at least 50% of new SARS-CoV-2 infections was estimated to have originated from exposure to individuals with infection but without symptoms. Conclusions and Relevance In this decision analytical model of multiple scenarios of proportions of asymptomatic individuals with COVID-19 and infectious periods, transmission from asymptomatic individuals was estimated to account for more than half of all transmissions. In addition to identification and isolation of persons with symptomatic COVID-19, effective control of spread will require reducing the risk of transmission from people with infection who do not have symptoms. These findings suggest that measures such as wearing masks, hand hygiene, social distancing, and strategic testing of people who are not ill will be foundational to slowing the spread of COVID-19 until safe and effective vaccines are available and widely used.

641 citations

Book ChapterDOI
TL;DR: This chapter presents the global distribution of Echinococcus species and human AE and CE in maps and summarizes the global data on host assemblages, transmission, prevalence in animal definitive hosts, incidence in people and molecular epidemiology.
Abstract: Alveolar echinococcosis (AE) and cystic echinococcosis (CE) are severe helminthic zoonoses. Echinococcus multilocularis (causative agent of AE) is widely distributed in the northern hemisphere where it is typically maintained in a wild animal cycle including canids as definitive hosts and rodents as intermediate hosts. The species Echinococcus granulosus, Echinococcus ortleppi, Echinococcus canadensis and Echinococcus intermedius are the causative agents of CE with a worldwide distribution and a highly variable human disease burden in the different endemic areas depending upon human behavioural risk factors, the diversity and ecology of animal host assemblages and the genetic diversity within Echinococcus species which differ in their zoonotic potential and pathogenicity. Both AE and CE are regarded as neglected zoonoses, with a higher overall burden of disease for CE due to its global distribution and high regional prevalence, but a higher pathogenicity and case fatality rate for AE, especially in Asia. Over the past two decades, numerous studies have addressed the epidemiology and distribution of these Echinococcus species worldwide, resulting in better-defined boundaries of the endemic areas. This chapter presents the global distribution of Echinococcus species and human AE and CE in maps and summarizes the global data on host assemblages, transmission, prevalence in animal definitive hosts, incidence in people and molecular epidemiology.

601 citations

Journal ArticleDOI
TL;DR: The results indicate that COVID-19 is hazardous not only for the elderly but also for middle-aged adults, for whom the infection fatality rate is two orders of magnitude greater than the annualized risk of a fatal automobile accident and far more dangerous than seasonal influenza.
Abstract: Determine age-specific infection fatality rates for COVID-19 to inform public health policies and communications that help protect vulnerable age groups. Studies of COVID-19 prevalence were collected by conducting an online search of published articles, preprints, and government reports that were publicly disseminated prior to 18 September 2020. The systematic review encompassed 113 studies, of which 27 studies (covering 34 geographical locations) satisfied the inclusion criteria and were included in the meta-analysis. Age-specific IFRs were computed using the prevalence data in conjunction with reported fatalities 4 weeks after the midpoint date of the study, reflecting typical lags in fatalities and reporting. Meta-regression procedures in Stata were used to analyze the infection fatality rate (IFR) by age. Our analysis finds a exponential relationship between age and IFR for COVID-19. The estimated age-specific IFR is very low for children and younger adults (e.g., 0.002% at age 10 and 0.01% at age 25) but increases progressively to 0.4% at age 55, 1.4% at age 65, 4.6% at age 75, and 15% at age 85. Moreover, our results indicate that about 90% of the variation in population IFR across geographical locations reflects differences in the age composition of the population and the extent to which relatively vulnerable age groups were exposed to the virus. These results indicate that COVID-19 is hazardous not only for the elderly but also for middle-aged adults, for whom the infection fatality rate is two orders of magnitude greater than the annualized risk of a fatal automobile accident and far more dangerous than seasonal influenza. Moreover, the overall IFR for COVID-19 should not be viewed as a fixed parameter but as intrinsically linked to the age-specific pattern of infections. Consequently, public health measures to mitigate infections in older adults could substantially decrease total deaths.

571 citations