scispace - formally typeset
Search or ask a question
Author

Michel Legrand

Bio: Michel Legrand is an academic researcher from university of lille. The author has contributed to research in topics: Ice core & Tobacco mosaic virus. The author has an hindex of 73, co-authored 245 publications receiving 23147 citations. Previous affiliations of Michel Legrand include Centre national de la recherche scientifique & Lille University of Science and Technology.


Papers
More filters
Journal ArticleDOI
03 Jun 1999-Nature
TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles as discussed by the authors.
Abstract: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial–interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years.

5,109 citations

Journal ArticleDOI
TL;DR: Several members of the PR-5 group from tobacco and other plant species were shown to display significant in vitro activity of inhibiting hyphal growth or spore germination of various fungi probably by a membrane permeabilizing mechanism.

655 citations

Journal ArticleDOI
TL;DR: Four endochitinases (poly[1,4-(N-acetyl-beta-D-glucosaminide)] glycanohydrolase, EC 3.2.1.14) have been purified from leaves of Nicotiana tabacum and are identified as 2 of the 10 pathogenesis-related proteins that are known to accumulate in tobacco in response to stress or pathogen attack.
Abstract: Four endochitinases (poly[1,4-(N-acetyl-β-D-glucosaminide)] glycanohydrolase, EC 3.2.1.14) have been purified from leaves of Nicotiana tabacum cv. Samsun NN reacting hypersensitively to tobacco mosaic virus. Two of them are acidic proteins of molecular weights 27,500 and 28,500 and have been identified as 2 of the 10 pathogenesis-related proteins that are known to accumulate in tobacco in response to stress or pathogen attack. These two pathogenesis-related proteins, named “P” and “Q” when their biological function was unknown, account for one-third of tobacco mosaic virus-induced chitinase activity of tobacco leaves. They are serologically closely related to the two other chitinases, which can be considered as new basic pathogenesis-related proteins. These two basic chitinases exhibit higher molecular weights (32,000 and 34,000) and higher specific enzyme activity than the two acidic isoforms.

545 citations

Journal ArticleDOI
TL;DR: Three of the ten acidic ‘pathogenesis‐related’ proteins known to accumulate in Nicotiana tabacum cv Samsun NN reacting hypersensitively to tobacco mosaic virus, namely −O, −N and −2, have been shown to have 1,3‐β‐glucanase (EC 3.2.1.39) activity.
Abstract: Three of the ten acidic `pathogenesis-related' (PR) proteins known to accumulate in Nicotiana tabacum cv Samsun NN reacting hypersensitively to tobacco mosaic virus, namely −O, −N and −2, have been shown to have 1,3-β-glucanase (EC 3.2.1.39) activity. By using sera raised against each protein purified to homogeneity close serological relationships have been demonstrated between the three proteins. The same specific sera cross-reacted with a basic protein which is also a 1,3-β-glucanase induced by virus infection and which can be considered as a new basic pathogenesis-related protein of tobacco. Protein PR-O and the basic 1,3-β-glucanase display about the same specific enzymatic activity, i.e. 50-fold and 250-fold higher than specific activities of proteins PR-N and -2 respectively.

520 citations

Journal ArticleDOI
TL;DR: Data demonstrate that the reduced size phenotype of HCT-silenced plants is not due to the alteration of lignin synthesis but to flavonoid accumulation, which is shown to be controlled by light and to depend on chalcone synthase expression.
Abstract: In Arabidopsis thaliana, silencing of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT), a lignin biosynthetic gene, results in a strong reduction of plant growth. We show that, in HCT-silenced plants, lignin synthesis repression leads to the redirection of the metabolic flux into flavonoids through chalcone synthase activity. Several flavonol glycosides and acylated anthocyanin were shown to accumulate in higher amounts in silenced plants. By contrast, sinapoylmalate levels were barely affected, suggesting that the synthesis of that phenylpropanoid compound might be HCT-independent. The growth phenotype of HCT-silenced plants was shown to be controlled by light and to depend on chalcone synthase expression. Histochemical analysis of silenced stem tissues demonstrated altered tracheary elements. The level of plant growth reduction of HCT-deficient plants was correlated with the inhibition of auxin transport. Suppression of flavonoid accumulation by chalcone synthase repression in HCT-deficient plants restored normal auxin transport and wild-type plant growth. By contrast, the lignin structure of the plants simultaneously repressed for HCT and chalcone synthase remained as severely altered as in HCT-silenced plants, with a large predominance of nonmethoxylated H units. These data demonstrate that the reduced size phenotype of HCT-silenced plants is not due to the alteration of lignin synthesis but to flavonoid accumulation.

503 citations


Cited by
More filters
Journal ArticleDOI
23 Sep 2009-Nature
TL;DR: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
Abstract: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.

8,837 citations

Journal ArticleDOI
13 Feb 2015-Science
TL;DR: An updated and extended analysis of the planetary boundary (PB) framework and identifies levels of anthropogenic perturbations below which the risk of destabilization of the Earth system (ES) is likely to remain low—a “safe operating space” for global societal development.
Abstract: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.

7,169 citations

Journal ArticleDOI
TL;DR: Solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year, and if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user.
Abstract: Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO2 emissions in the atmosphere demands that holding atmospheric CO2 levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species.

7,076 citations

01 Jan 2013
TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles.
Abstract: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial–interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years.

5,469 citations

Journal ArticleDOI
03 Jun 1999-Nature
TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles as discussed by the authors.
Abstract: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial–interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years.

5,109 citations