scispace - formally typeset
Search or ask a question
Author

Michele Goano

Bio: Michele Goano is an academic researcher from Polytechnic University of Turin. The author has contributed to research in topics: Pseudopotential & Auger effect. The author has an hindex of 27, co-authored 158 publications receiving 2940 citations. Previous affiliations of Michele Goano include École Normale Supérieure & Georgia Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive study of the transport dynamics of electrons in the ternary compounds, Al/sub x/Ga/sub 1-x/N and In/sub ng/g/ng/s/n g/n/g n/g 1.x/n, is presented, which includes all of the major scattering mechanisms.
Abstract: We present a comprehensive study of the transport dynamics of electrons in the ternary compounds, Al/sub x/Ga/sub 1-x/N and In/sub x/Ga/sub 1-x/N. Calculations are made using a nonparabolic effective mass energy band model. Monte Carlo simulation that includes all of the major scattering mechanisms. The band parameters used in the simulation are extracted from optimized pseudopotential band calculations to ensure excellent agreement with experimental information and ab initio band models. The effects of alloy scattering on the electron transport physics are examined. The steady state velocity field curves and low field mobilities are calculated for representative compositions of these alloys at different temperatures and ionized impurity concentrations. A field dependent mobility model is provided for both ternary compounds AlGaN and InGaN. The parameters for the low and high field mobility models for these ternary compounds are extracted and presented. The mobility models can be employed in simulations of devices that incorporate the ternary III-nitrides.

421 citations

Journal ArticleDOI
TL;DR: In this article, the authors classified and reviewed the physical mechanisms causing the efficiency droop in InGaN/GaN blue light-emitting diodes and remedies proposed for droop mitigation.
Abstract: Physical mechanisms causing the efficiency droop in InGaN/GaN blue light-emitting diodes and remedies proposed for droop mitigation are classified and reviewed. Droop mechanisms taken into consideration are Auger recombination, reduced active volume effects, carrier delocalization, and carrier leakage. The latter can in turn be promoted by polarization charges, inefficient hole injection, asymmetry between electron and hole densities and transport properties, lateral current crowding, quantum-well overfly by ballistic electrons, defect-related tunneling, and saturation of radiative recombination. Reviewed droop remedies include increasing the thickness or number of the quantum wells, improving the lateral current uniformity, engineering the quantum barriers (including multi-layer and graded quantum barriers), using insertion or injection layers, engineering the electron-blocking layer (EBL) (including InAlN, graded, polarization-doped, and superlattice EBL), exploiting reversed polarization (by either inverted epitaxy or N-polar growth), and growing along semi- or non-polar orientations. Numerical device simulations of a reference device are used through the paper as a proof of concept for selected mechanisms and remedies.

371 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented nonlocal pseudopotential calculations based on realistic, effective atomic potentials of the wurtzite phase of GaN, InN, and AlN.
Abstract: This work presents nonlocal pseudopotential calculations based on realistic, effective atomic potentials of the wurtzite phase of GaN, InN, and AlN. A formulation formulation for the model effective atomic potentials has been introduced. For each of the constitutive atoms in these materials, the form of the effective potentials is optimized through an iterative scheme in which the band structures are recursively calculated and selected features are compared to experimental and/or ab initio results. The optimized forms of the effective atomic potentials are used to calculate the band structures of the binary compounds, GaN, InN, and AlN. The calculated band structures are in excellent overall agreement with the experimental/ab initio values, i.e., the energy gaps at high-symmetry points, valence-band ordering, and effective masses for electrons match to within 3%, with a few values within 5%. The values of the energy separation, effective masses, and nonparabolicity coefficients for several secondary valleys are tabulated as well in order to facilitate analytical Monte Carlo transport simulations.

132 citations

Journal ArticleDOI
TL;DR: In this paper, direct interband and intraband Auger recombination due to electron-electron-hole and hole-holeelectron transitions in bulk InGaN is investigated by first-order perturbation theory including Fermi statistics, realistic electronic structures obtained by nonlocal empirical pseudopotential calculations, and their corresponding wavevector-dependent dielectric functions.
Abstract: Direct interband and intraband Auger recombination due to electron-electron-hole and hole-hole-electron transitions in bulk InGaN is investigated by first-order perturbation theory including Fermi statistics, realistic electronic structures obtained by nonlocal empirical pseudopotential calculations, and their corresponding wavevector-dependent dielectric functions. Our results confirm that the intraband Auger coefficient is negligible in alloy compositions relevant for solid-state lighting and indicate that the resonant enhancement associated with interband transitions for wavelengths ranging from blue to green cannot account for the efficiency droop experimentally observed in GaN-based light emitting diodes.

95 citations

Journal ArticleDOI
TL;DR: In this article, the effects of trap-assisted tunneling on the sub-threshold forward bias characteristics of a blue InGaN/GaN single-quantum-well LED test structure grown on a SiC substrate were investigated.
Abstract: In a combined experimental and numerical investigation, we present the effects of trap-assisted tunneling on the sub-threshold forward bias characteristics of a blue InGaN/GaN single-quantum-well LED test structure grown on a SiC substrate. The different role of donor- and acceptor-like traps has been studied, for the information it can provide on the role played by point defects. Using the energy Et and trap density Nt as the only tunneling-related fitting parameters, the behavior of the measured I(V) curves is well reproduced by our model over a wide current and temperature range. The very good agreement between simulations and experiments suggests that trap-assisted forward tunneling is one of the most relevant contributions to the current flow below the optical turn-on of the diode.

88 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

01 Jan 2011

2,117 citations

Book ChapterDOI
01 Jan 1998

1,532 citations

Journal ArticleDOI
TL;DR: In this article, high-order harmonic generation is observed in a bulk crystalline solid with important implications for attosecond science, where the host medium for this interaction is typically a gas.
Abstract: High-order harmonic generation is a nonlinear optical process that enables the creation of light pulses at frequencies much higher than that from a seed laser. The host medium for this interaction is typically a gas. Now, the process has been observed in a bulk crystalline solid with important implications for attosecond science.

1,264 citations