scispace - formally typeset
Search or ask a question
Author

Michelle L. Zjhra

Other affiliations: University of Wisconsin-Madison
Bio: Michelle L. Zjhra is an academic researcher from Georgia Southern University. The author has contributed to research in topics: NdhF & Tecomeae. The author has an hindex of 9, co-authored 9 publications receiving 1584 citations. Previous affiliations of Michelle L. Zjhra include University of Wisconsin-Madison.

Papers
More filters
Journal ArticleDOI
11 Apr 2008-Science
TL;DR: It is shown, in an analysis of wide taxonomic and geographic breadth and high spatial resolution, that multitaxonomic rather than single-taxon approaches are critical for identifying areas likely to promote the persistence of most species.
Abstract: Globally, priority areas for biodiversity are relatively well known, yet few detailed plans exist to direct conservation action within them, despite urgent need. Madagascar, like other globally recognized biodiversity hot spots, has complex spatial patterns of endemism that differ among taxonomic groups, creating challenges for the selection of within-country priorities. We show, in an analysis of wide taxonomic and geographic breadth and high spatial resolution, that multitaxonomic rather than single-taxon approaches are critical for identifying areas likely to promote the persistence of most species. Our conservation prioritization, facilitated by newly available techniques, identifies optimal expansion sites for the Madagascar government's current goal of tripling the land area under protection. Our findings further suggest that high-resolution multitaxonomic approaches to prioritization may be necessary to ensure protection for biodiversity in other global hot spots.

477 citations

Journal ArticleDOI
TL;DR: To address the composition of the urticalean rosids, the relationships of the component families and analyze evolution of morphological characters, sequence variation is analyzed for a large sampling of these families and various rosid outgroups using rbcL, trnL-F, and ndhF plastid regions.
Abstract: To address the composition of the urticalean rosids, the relationships of the component families (maximally Cannabaceae, Cecropiaceae, Celtidaceae, Moraceae, Ulmaceae, and Urticaceae) and analyze evolution of morphological characters, we analyzed sequence variation for a large sampling of these families and various rosid outgroups using rbcL, trnL-F, and ndhF plastid regions. Urticalean rosids are derived out of a lineage including Barbeyaceae, Dirachmaceae, Elaeagnaceae, and Rhamnaceae, with Rosaceae less closely related; thus, they are imbedded within Rosales. Ulmaceae are the sister to all remaining families. Cannabaceae are derived out of a subclade of Celtidaceae; this expanded family should be called Cannabaceae. Cecropiaceae are derived within Urticaceae and are polyphyletic with Poikilospermum derived elsewhere within Urticaceae; this expanded family should be called Urticaceae. Monophyletic Moraceae are sister to this expanded Urticaceae. Support for these relationships comes from a number of morphological characters (floral sexuality, presence or absence of hypanthium, stamen type and dehiscence, pollen pore number, ovule position, and embryo alignment) and chromosome numbers. Most fruit types, in terms of ecological dispersal, are derived independently multiple times and are strongly correlated with habitat.

204 citations

Journal ArticleDOI
TL;DR: The results indicate that the PHMV differentiated during the late Cretaceous, which is likely in explaining the South American–Australasian disjunction and subsequent dispersal events between the two and to Africa and the Mediterranean basin.
Abstract: Some of the most interesting but still most contentious disjunct biogeographical distributions involve Southern Hemisphere tropical and warm temperate families. The PHMV clade of Myrtales includes four families (Psiloxylaceae, Heteropyxidaceae, Myrtaceae, and Vochysiaceae) that exhibit a number of these biogeographical patterns. The related Psiloxylaceae and Heteropyxidaceae are small families restricted in distribution to the recent volcanic Mascarene Islands to the east of Madagascar and to southeast Africa, respectively. Myrtaceae are found on three major Gondwanan regions (South America, Australasia, and Africa). Because the New World taxa are almost exclusively fleshy fruited, it is unclear whether the family distribution is a classic Gondwanan vicariance pattern or results from one or more long‐distance dispersal events over ocean barriers. The Vochysiaceae represent one of a handful of families with amphi‐Atlantic distributions vigorously argued to support both long‐distance dispersal over the Atla...

204 citations

Journal ArticleDOI
TL;DR: Parsimony inference suggests that the family originated in the neotropics, with at least five dispersal events leading to the Old World representatives.
Abstract: Bignoniaceae are woody, trees, shrubs, and lianas found in all tropical fl oras of the world with lesser representation in temperate regions. Phylogenetic analyses of chloroplast sequences ( rbcL , ndhF , trnL-F ) were undertaken to infer evolutionary relationships in Bignoniaceae and to revise its classifi cation. Eight clades are recognized as tribes (Bignonieae, Catalpeae, Coleeae, Crescentieae, Jacarandeae, Oroxyleae, Tecomeae, Tourrettieae); additional inclusive clades are named informally. Jacarandeae and Catalpeae are resurrected; the former is sister to the rest of the family, and the latter occupies an unresolved position within the “ core ” Bignoniaceae. Tribe Eccremocarpeae is included in Tourrettieae. Past classifi cations recognized a large Tecomeae, but this tribe is paraphyletic with respect to all other tribes. Here Tecomeae are reduced to a clade of approximately 12 genera with a worldwide distribution in both temperate and tropical ecosystems. Two large clades, Bignonieae and Crescentiina, account for over 80% of the species in the family. Coleeae and Crescentieae are each included in larger clades, the Paleotropical alliance and Tabebuia alliance, respectively; each alliance includes a grade of taxa assigned to the traditional Tecomeae. Parsimony inference suggests that the family originated in the neotropics, with at least fi ve dispersal events leading to the Old World representatives.

160 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: A revised and updated classification for the families of the flowering plants is provided in this paper, which includes Austrobaileyales, Canellales, Gunnerales, Crossosomatales and Celastrales.

7,299 citations

Journal ArticleDOI
TL;DR: This review uses knowledge gained from human‐modified landscapes to suggest eight hypotheses, which it hopes will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services.
Abstract: Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on

1,513 citations

Journal ArticleDOI
TL;DR: The software quantifies similarity of ENMs generated using the program Maxent and uses randomization tests to compare observed similarity to that expected under different null hypotheses.
Abstract: We present software that facilitates quantitative comparisons of environmental niche models (ENMs). Our software quantifies similarity of ENMs generated using the program Maxent and uses randomization tests to compare observed similarity to that expected under different null hypotheses. ENMTools is available online free of charge from .

1,491 citations

Journal ArticleDOI
TL;DR: It is proposed that species distribution modellers should get involved in real decision-making processes that will benefit from their technical input and have the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes.
Abstract: Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of 'translators' between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes.

1,390 citations