scispace - formally typeset
Search or ask a question
Author

Miguel A. Bessa

Bio: Miguel A. Bessa is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Composite laminates & Peridynamics. The author has an hindex of 16, co-authored 35 publications receiving 1216 citations. Previous affiliations of Miguel A. Bessa include University of Porto & Northwestern University.

Papers
More filters
Journal ArticleDOI
TL;DR: A new data-driven computational framework is developed to assist in the design and modeling of new material systems and structures and includes the recently developed “self-consistent clustering analysis” method in order to build large databases suitable for machine learning.

385 citations

Journal ArticleDOI
TL;DR: This work offers an alternative to currently established plasticity formulations by providing the foundations for finding history- and microstructure-dependent constitutive models through deep learning.
Abstract: Plasticity theory aims at describing the yield loci and work hardening of a material under general deformation states. Most of its complexity arises from the nontrivial dependence of the yield loci on the complete strain history of a material and its microstructure. This motivated 3 ingenious simplifications that underpinned a century of developments in this field: 1) yield criteria describing yield loci location; 2) associative or nonassociative flow rules defining the direction of plastic flow; and 3) effective stress-strain laws consistent with the plastic work equivalence principle. However, 2 key complications arise from these simplifications. First, finding equations that describe these 3 assumptions for materials with complex microstructures is not trivial. Second, yield surface evolution needs to be traced iteratively, i.e., through a return mapping algorithm. Here, we show that these assumptions are not needed in the context of sequence learning when using recurrent neural networks, diverting the above-mentioned complications. This work offers an alternative to currently established plasticity formulations by providing the foundations for finding history- and microstructure-dependent constitutive models through deep learning.

292 citations

Journal ArticleDOI
TL;DR: A mechanistic, data-driven, two-scale approach is developed for predicting the behavior of general heterogeneous materials under irreversible processes such as inelastic deformation and is believed to open new avenues in parameter-free multi-scale modeling of complex materials, and perhaps in other fields that require homogenization of irreversible processes.

287 citations

Journal ArticleDOI
TL;DR: A computational data-driven approach is followed for exploring a new metamaterial concept and adapting it to different target properties, choice of base materials, length scales, and manufacturing processes.
Abstract: Designing future-proof materials goes beyond a quest for the best. The next generation of materials needs to be adaptive, multipurpose, and tunable. This is not possible by following the traditional experimentally guided trial-and-error process, as this limits the search for untapped regions of the solution space. Here, a computational data-driven approach is followed for exploring a new metamaterial concept and adapting it to different target properties, choice of base materials, length scales, and manufacturing processes. Guided by Bayesian machine learning, two designs are fabricated at different length scales that transform brittle polymers into lightweight, recoverable, and supercompressible metamaterials. The macroscale design is tuned for maximum compressibility, achieving strains beyond 94% and recoverable strengths around 0.1 kPa, while the microscale design reaches recoverable strengths beyond 100 kPa and strains around 80%. The data-driven code is available to facilitate future design and analysis of metamaterials and structures (https://github.com/mabessa/F3DAS).

138 citations

Journal ArticleDOI
TL;DR: This paper is the first investigation establishing the link between the meshfree state-based peridynamics method and other meshfree methods, in particular with the moving least squares reproducing kernel particle method (RKPM).
Abstract: This paper is the first investigation establishing the link between the meshfree state-based peridynamics method and other meshfree methods, in particular with the moving least squares reproducing kernel particle method (RKPM). It is concluded that the discretization of state-based peridynamics leads directly to an approximation of the derivatives that can be obtained from RKPM. However, state-based peridynamics obtains the same result at a significantly lower computational cost which motivates its use in large-scale computations. In light of the findings of this study, an update to the method is proposed such that the limitations regarding application of boundary conditions and the use of non-uniform grids are corrected by using the reproducing kernel approximation.

135 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Jan 2016
TL;DR: Kindly say, the nonlinear finite elements for continua and structures is universally compatible with any devices to read.
Abstract: nonlinear finite elements for continua and structures is available in our book collection an online access to it is set as public so you can get it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the nonlinear finite elements for continua and structures is universally compatible with any devices to read.

445 citations

Journal ArticleDOI
TL;DR: A new data-driven computational framework is developed to assist in the design and modeling of new material systems and structures and includes the recently developed “self-consistent clustering analysis” method in order to build large databases suitable for machine learning.

385 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a Web of Science Record created on 2013-02-27, modified on 2017-05-10 and used for EPFL-ARTICLE-184271.
Abstract: Reference EPFL-ARTICLE-184271doi:10.1016/j.compositesa.2012.08.001View record in Web of Science Record created on 2013-02-27, modified on 2017-05-10

359 citations