scispace - formally typeset
Search or ask a question

Showing papers by "Miguel Ángel González Ballester published in 2006"


Book ChapterDOI
01 Oct 2006
TL;DR: A 2D/3D reconstruction scheme combining statistical extrapolation and regularized shape deformation with an iterative image-to-model correspondence establishing algorithm is presented, and its application to reconstruct the surface of proximal femur is shown.
Abstract: Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and a point distribution model is discussed. We present a 2D/3D reconstruction scheme combining statistical extrapolation and regularized shape deformation with an iterative image-to-model correspondence establishing algorithm, and show its application to reconstruct the surface of proximal femur. The image-to-model correspondence is established using a non-rigid 2D point matching process, which iteratively uses a symmetric injective nearest-neighbor mapping operator and 2D thin-plate splines based deformation to find a fraction of best matched 2D point pairs between features detected from the fluoroscopic images and those extracted from the 3D model. The obtained 2D point pairs are then used to set up a set of 3D point pairs such that we turn a 2D/3D reconstruction problem to a 3D/3D one. We designed and conducted experiments on 11 cadaveric femurs to validate the present reconstruction scheme. An average mean reconstruction error of 1.2 mm was found when two fluoroscopic images were used for each bone. It decreased to 1.0 mm when three fluoroscopic images were used.

70 citations


Book ChapterDOI
01 Oct 2006
TL;DR: This paper focuses on the design of orthopaedic implants that fit a maximum percentage of the target population, both in terms of geometry and biomechanical stability.
Abstract: We present a framework for statistical finite element analysis combining shape and material properties, and allowing performing statistical statements of biomechanical performance across a given population. In this paper, we focus on the design of orthopaedic implants that fit a maximum percentage of the target population, both in terms of geometry and biomechanical stability. CT scans of the bone under consideration are registered non-rigidly to obtain correspondences in position and intensity between them. A statistical model of shape and intensity (bone density) is computed by means of principal component analysis. Afterwards, finite element analysis (FEA) is performed to analyse the biomechanical performance of the bones. Realistic forces are applied on the bones and the resulting displacement and bone stress distribution are calculated. The mechanical behaviour of different PCA bone instances is compared.

41 citations


Journal ArticleDOI
TL;DR: Defining normalized MRI measures of the intensity relations between the internal grey nuclei of patients, sCJD and variant CJD patients are robustly differentiated in an attempt to create an automatic classification tool of human spongiform encephalopathy.
Abstract: We present a method for the analysis of basal ganglia (including the thalamus) for accurate detection of human spongiform encephalopathy in multisequence magnetic resonance imaging (MRI) of the brain. One common feature of most forms of prion protein diseases is the appearance of hyperintensities in the deep grey matter area of the brain in T2-weighted magnetic resonance (MR) images. We employ T1, T2, and Flair-T2 MR sequences for the detection of intensity deviations in the internal nuclei. First, the MR data are registered to a probabilistic atlas and normalized in intensity. Then smoothing is applied with edge enhancement. The segmentation of hyperintensities is performed using a model of the human visual system. For more accurate results, a priori anatomical data from a segmented atlas are employed to refine the registration and remove false positives. The results are robust over the patient data and in accordance with the clinical ground truth. Our method further allows the quantification of intensity distributions in basal ganglia. The caudate nuclei are highlighted as main areas of diagnosis of sporadic Creutzfeldt-Jakob Disease (sCJD), in agreement with the histological data. The algorithm permitted the classification of the intensities of abnormal signals in sCJD patient FLAIR images with a higher hypersignal in caudate nuclei (10/10) and putamen (6/10) than in thalami. Defining normalized MRI measures of the intensity relations between the internal grey nuclei of patients, we robustly differentiate sCJD and variant CJD (vCJD) patients, in an attempt to create an automatic classification tool of human spongiform encephalopathies

13 citations


Proceedings ArticleDOI
13 Mar 2006
TL;DR: In this paper, an ultrasound-guided surgical microscope was developed to improve localization and targeting, to provide a better anatomic definition of the surgical field, and to decrease invasiveness.
Abstract: Image-guided, computer-assisted neurosurgery has emerged to improve localization and targeting, to provide a better anatomic definition of the surgical field, and to decrease invasiveness. Usually, in image-guided surgery, a computer displays the surgical field in a CT/MR environment, using axial, coronal or sagittal views, or even a 3D representation of the patient. Such a system forces the surgeon to look away from the surgical scene to the computer screen. Moreover, this kind of information, being pre-operative imaging, can not be modified during the operation, so it remains valid for guidance in the first stage of the surgical procedure, and mainly for rigid structures like bones. In order to solve the two constraints mentioned before, we are developing an ultrasoundguided surgical microscope. Such a system takes the advantage that surgical microscopy and ultrasound systems are already used in neurosurgery, so it does not add more complexity to the surgical procedure. We have integrated an optical tracking device in the microscope and an augmented reality overlay system with which we avoid the need to look away from the scene, providing correctly aligned surgical images with sub-millimeter accuracy. In addition to the standard CT and 3D views, we are able to track an ultrasound probe, and using a previous calibration and registration of the imaging, the image obtained is correctly projected to the overlay system, so the surgeon can always localize the target and verify the effects of the intervention. Several tests of the system have been already performed to evaluate the accuracy, and clinical experiments are currently in progress in order to validate the clinical usefulness of the system.

4 citations


Proceedings ArticleDOI
02 Mar 2006
TL;DR: It was determined that the primary factor for poor ultrasound performance was the inaccurate localization of the three initial landmarks, which are used for the statistical shape model.
Abstract: This paper presents a feasibility and evaluation study for using 2D ultrasound in conjunction with our statistical deformable bone model in the scope of computer-assisted surgery (CAS). The final aim is to provide the surgeon with an enhanced 3D visualization for surgical navigation in orthopaedic surgery without the need for preoperative CT or MRI scans. We unified our earlier work to combine several automatic methods for statistical bone shape prediction from a sparse set of surface points, and ultrasound segmentation and calibration to provide the intended rapid and accurate visualization. We compared the use of a tracked digitizing pointer to ultrasound to acquire landmarks and bone surface points for the estimation of two cast proximal femurs, where two users performed the experiments 5-6 times per scenario. The concept of CT-based error introduced in the paper is used to give an approximate quantitative value to the best hoped-for prediction error, or lower-bound error, for a given anatomy. The conclusions of this work were that the pointer-based approach produced good results, and although the ultrasound-based approach performed considerably worse on average, there were several cases where the results were comparable to the pointer-based approach. It was determined that the primary factor for poor ultrasound performance was the inaccurate localization of the three initial landmarks, which are used for the statistical shape model.

4 citations