Author
Mihaela Kusko
Bio: Mihaela Kusko is an academic researcher. The author has contributed to research in topics: Graphene & Waveguide (optics). The author has an hindex of 11, co-authored 67 publications receiving 458 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: A nanocomposite formed from molybdenum disulphide (MoS2) and graphene quantum dots (GQDs) was proposed as a novel and suitable support for enzyme immobilisation displaying interesting electrochemical properties and was successfully applied for the determination of total polyphenolic content from red wine samples.
Abstract: A nanocomposite formed from molybdenum disulphide (MoS2) and graphene quantum dots (GQDs) was proposed as a novel and suitable support for enzyme immobilisation displaying interesting electrochemical properties. The conductivity of the carbon based screen-printed electrodes was highly improved after modification with MoS2 nanoflakes and GQDs, the nanocomposite also providing compatible matrix for laccase immobilisation. The influence of different modification steps on the final electroanalytical performances of the modified electrode were evaluated by UV-vis absorption and fluorescence spectroscopy, scanning electron microscopy, transmission electron microscopy, X ray diffraction, electrochemical impedance spectroscopy and cyclic voltammetry. The developed laccase biosensor has responded efficiently to caffeic acid over a concentration range of 0.38-100µM, had a detection limit of 0.32µM and a sensitivity of 17.92nAµM(-1). The proposed analytical tool was successfully applied for the determination of total polyphenolic content from red wine samples.
94 citations
TL;DR: In this article, the role of graphene quantum dots (GQDs) as co-sensitizers in hybrid dye sensitized solar cell (DSSC) architectures, focusing on various concurring mechanisms, such as charge transfer, energy transfer and recombination rate, towards light harvesting improvement.
Abstract: We explored the role of graphene quantum dots (GQDs) as co-sensitizers in hybrid dye sensitized solar cell (DSSC) architectures, focusing on various concurring mechanisms, such as: charge transfer, energy transfer and recombination rate, towards light harvesting improvement. GQDs were prepared by the hydrothermal method that allows the tuning of electronic levels and optical properties by employing appropriate precursors and synthesis conditions. The aim was to realize a type II alignment for TiO2/GQD/dye hybrid configuration, using standard N3 Ru-dye in order to improve charge transfer. When GQDs were used as co-sensitizers together with N3 Ru-dye, an improvement in power conversion efficiency was achieved, as shown by electrical measurements. The experimental analysis indicates that this improvement arises from the interplay of various mechanisms mediated by GQDs: (i) enhancement of charge separation and collection due to the cascaded alignment of the energy levels; (ii) energy transfer from GQDs to N3 Ru-dye due to the overlap between GQD photoluminescence and N3 Ru-dye absorption spectra; and (iii) reduction of the electron recombination to the redox couple due to the inhibition of the back electron transfer to the electrolyte by the GQDs.
79 citations
TL;DR: In this work, a significant improvement of the classical silicon nanowire (SiNW)-based photodetector was achieved through the realization of core-shell structures using newly designed GQDPEIs via simple solution processing.
Abstract: In this work, a significant improvement of the classical silicon nanowire (SiNW)-based photodetector was achieved through the realization of core–shell structures using newly designed GQDPEIs via simple solution processing. The poly(ethyleneimine) (PEI)-assisted synthesis successfully tuned both optical and electrical properties of graphene quantum dots (GQDs) to fulfill the requirements for strong yellow photoluminescence emission along with large band gap formation and the introduction of electronic states inside the band gap. The fabrication of a GQDPEI-based device was followed by systematic structural and photoelectronic investigation. Thus, the GQDPEI/SiNW photodetector exhibited a large photocurrent to dark current ratio (Iph/Idark up to ∼0.9 × 102 under 4 V bias) and a remarkable improvement of the external quantum efficiency values that far exceed 100%. In this frame, GQDPEIs demonstrate the ability to arbitrate both charge-carrier photogeneration and transport inside a heterojunction, leading to...
58 citations
TL;DR: The achievement of an easy scalable technology for solid state supercapacitors on silicon, with excellent electrochemical properties, is demonstrated, comparable to many of the best high-power and/or high-energy carbon-based super capacitors, their figures of merit matching under battery-like supercapACitor behaviour.
Abstract: The challenge for conformal modification of the ultra-high internal surface of nanoporous silicon was tackled by electrochemical polymerisation of 2,6-dihydroxynaphthalene using cyclic voltammetry or potentiometry and, notably, after the thermal treatment (800 °C, N2, 4 h) an assembly of interconnected networks of graphene strongly adhering to nanoporous silicon matrix resulted. Herein we demonstrate the achievement of an easy scalable technology for solid state supercapacitors on silicon, with excellent electrochemical properties. Accordingly, our symmetric supercapacitors (SSC) showed remarkable performance characteristics, comparable to many of the best high-power and/or high-energy carbon-based supercapacitors, their figures of merit matching under battery-like supercapacitor behaviour. Furthermore, the devices displayed high specific capacity values along with enhanced capacity retention even at ultra-high rates for voltage sweep, 5 V/s, or discharge current density, 100 A/g, respectively. The cycling stability tests performed at relatively high discharge current density of 10 A/g indicated good capacity retention, with a superior performance demonstrated for the electrodes obtained under cyclic voltammetry approach, which may be ascribed on the one hand to a better coverage of the porous silicon substrate and, on the other hand, to an improved resilience of the hybrid electrode to pore clogging.
44 citations
TL;DR: Results showed that honey mediated synthesis generates nanoparticles with reduced toxicity trends depending on the cell type, concentration of nanoparticles and exposure time toward various biomedical applications.
Abstract: Gold nanoparticles of comparable size were synthetized using honey mediated green method (AuNPs@honey) and citrate mediated Turkevich method (AuNPs@citrate). Their colloidal behavior in two cell media DMEM and RPMI, both supplemented with 10% FBS, was systematically investigated with different characterization techniques in order to evidence how the composition of the media influences their stability and the development of protein/NP complex. We revealed the formation of the protein corona which individually covers the nanoparticles in RPMI media, like a dielectric spacer according to UV-Vis spectroscopy, while DMEM promotes more abundant agglomerations, clustering together the nanoparticles, according to TEM investigations. In order to evaluate the biological impact of nanoparticles, B16 melanoma and L929 mouse fibroblasts cells were used to carry out the viability assays. Generally, the L929 cells were more sensitive than B16 cells to the presence of gold nanoparticles. Measurements of cell viability, proliferation and apoptotic activities of B16 cells indicated that the effects induced by AuNPs@honey were slightly similar to those induced by AuNPs@citrate, however, the toxic response improved in the L929 fibroblast cells following the treatment with AuNPs@honey within the same concentration range from 1 μg/ml to 15 μg/ml for 48 h. Results showed that honey mediated synthesis generates nanoparticles with reduced toxicity trends depending on the cell type, concentration of nanoparticles and exposure time toward various biomedical applications.
34 citations
Cited by
More filters
01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.
2,213 citations
TL;DR: In this article, recent exciting progresses on CD and GQD-based optoelectronic and energy devices, such as light emitting diodes (LEDs), solar cells (SCs), photodetctors (PDs), photocatalysis, batteries, and supercapacitors are highlighted.
Abstract: As new members of carbon material family, carbon and graphene quantum dots (CDs, GQDs) have attracted tremendous attentions for their potentials for biological, optoelectronic, and energy related applications. Among these applications, bio-imaging has been intensively studied, but optoelectronic and energy devices are rapidly rising. In this Feature Article, recent exciting progresses on CD- and GQD-based optoelectronic and energy devices, such as light emitting diodes (LEDs), solar cells (SCs), photodetctors (PDs), photocatalysis, batteries, and supercapacitors are highlighted. The recent understanding on their microstructure and optical properties are briefly introduced in the first part. Some important progresses on optoelectronic and energy devices are then addressed as the main part of this Feature Article. Finally, a brief outlook is given, pointing out that CDs and GQDs could play more important roles in communication- and energy-functional devices in the near future.
1,023 citations
01 Jan 2016
TL;DR: “Essentials” covers force field and molecular orbital theory, Monte Carlo and Molecular Dynamics simulations, thermodynamic and electronic (spectroscopic) property calculation, condensed phase treatment and a few more topics, and is an alternative to Andrew R. Leach's well-established “Molecular Modeling” and Frank Jensen’s “Introduction to Computational Chemistry”.
Abstract: The fact that a new text book introducing the essentials of computational chemistry contains more than 500 pages shows impressively the grown and still growing size and importance of this field of chemistry. The author’s objectives of the book, using his own words, are “to provide a survey of computational chemistry its underpinnings, its jargon, its strengths and weaknesses that will be accessible to both the experimental and theoretical communities”. This design as a general introduction into computational chemistry makes it an alternative to Andrew R. Leach’s well-established “Molecular Modeling” (Prentice Hall) and Frank Jensen’s “Introduction to Computational Chemistry” (Wiley), although the latter focuses on the theory of electronic structure methods. Cramer’s “Essentials” covers force field and molecular orbital theory, Monte Carlo and Molecular Dynamics simulations, thermodynamic and electronic (spectroscopic) property calculation, condensed phase treatment and a few more topics. Moreover, the book contains thirteen selected case studies sexamples taken from the literature sto illustrate the application of the just presented theoretical and computational models. This especially makes the text book well suited for both classroom discussion and self-study. Each chapter of “Essentials” covers a main topic of computational chemistry and will be briefly described here; all chapters are ended by a bibliography and suggested additional readings as well as the literature references cited in the text. In chapter 1 the author defines basic terms such as “theory”, “model”, and “computation”, introduces the concept of the potential energy surface and provides some general considerations about hardware and software. Interestingly, the first equation occurring in the text is not Schro ̈dinger’s equation, as is the case for most computational chemistry introductions, but the famous Einstein relation. The second chapter deals with molecular mechanics. It explains the different potential energy contributions, introduces the field of structure optimization, and provides an overview of the variety of modern force fields. Chapter 3 covers the simulation of molecular ensembles. It defines phase space and trajectories and shows the formalism of, and problems and difference between, Monte Carlo and molecular dynamics. In chapter 4 the author introduces the foundations of molecular orbital theory. Basic concepts such as Hamilton operator, LCAO basis set approach, many-electron wave functions, etc. are explained. To illuminate the LCAO variational process, the Hu ̈ckel theory is presented with an example. Chapter 5 deals with semiempirical molecular orbital (MO) theory. Besides the classical approaches (extended Hu ̈ckel, CNDO, INDO, NDDO) and methods (e.g., MNDO, AM1, PM3) and their performance, examples are provided from the ongoing development in that still fascinating area. Ab initio MO theory is presented in chapter 6; the basis set concept is discussed in detail, and, after some considerations from an user’s point of view, the general performance of ab initio methods is explicated. The next chapter covers the problem of electron correlation and gives the most prominent solutions for its treatment: configuration interaction, theory of the multiconfiguration self-consistent field, perturbation, and coupled cluster. Practical issues are also discussed. Chapter 8’s topic is density functional theory (DFT). Its theoretical foundation, methodology, and some functionals as well as its pros and cons compared to MO theory are presented together with a general performance overview. The next two chapters deal with charge distribution, derived and spectroscopic properties (e.g., atomic charges, polarizability, rotational, vibrational, and NMR spectra), and thermodynamic properties (e.g., zero-point vibrational energy, free energy of formation, and reaction). The modeling of condensed phases is addressed in chapters 11 (implicit models) and 12 (explicit models), which closes with a comparison between the two approaches. Chapter 13 familiarizes the reader with hybrid quantum mechanical/molecular mechanical (QM/MM) models. Polarization as well as the problematic implications of unsaturated QM and MM components are discussed, and empirical valence bond methods are also presented. The treatment of excited states is the topic of chapter 14; besides CI and MCSCF as computational methods, transition probabilities and solvatochromism are discussed. The last chapter deals with reaction dynamics, mostly adiabaticskinetics, rate constants, reaction paths, and transition state theory are section topics here sbut also nonadiabatic, introducing curve crossing and Marcus theory in brief. The appendix is divided into four parts: an acronym glossary (which is very helpful), an overview of symmetry and group theory, an introduction to spin algebra, and finally a section about orbital localization. A rather detailed index ends the book. The “Essentials” writing style fits the fascinating topic: one reads on and on andssurprise! sanother chapter has been absorbed. The text is complemented by a large number of black and white figures and clear tables, mostly self-explanatory with descriptive captions. The use of equations and mathematical formulas in general is well-balanced, and the level of math should be understandable for every natural scientist with some basic knowledge of physics. There are only a few minor shortcomings: for example, a literature reference cited in the text (“Beck et al.”, p 142) is missing in the bibliography; “Kronecker” is mistyped with o ̈; and the author completely forgot to reference Leach’s text book when referring to other computational chemistry introductions. However, the author has established a specific errata web page (http://pollux.chem.umn.edu/ ∼cramer/Errors.html) with all known errors. These will be corrected in the next printing or next revised edition, respectively. With its emphasis, on one hand, on the basic concepts and applications rather than pure theory and mathematics, and on the other hand, coverage of quantum mechanical and classical mechanical models including examples from inorganic, organic, and biological chemistry, “Essentials” is a useful tool not only for teaching and learning but also as a quick reference, and thus will most probably become one of the standard text books for computational chemistry.
814 citations
TL;DR: The differences between G QDs and other nanomaterials, including their nanocarbon cousins, are emphasized, and the unique advantages of GQDs for specific applications are highlighted.
Abstract: Graphene quantum dots (GQDs) that are flat 0D nanomaterials have attracted increasing interest because of their exceptional chemicophysical properties and novel applications in energy conversion and storage, electro/photo/chemical catalysis, flexible devices, sensing, display, imaging, and theranostics. The significant advances in the recent years are summarized with comparative and balanced discussion. The differences between GQDs and other nanomaterials, including their nanocarbon cousins, are emphasized, and the unique advantages of GQDs for specific applications are highlighted. The current challenges and outlook of this growing field are also discussed.
526 citations