scispace - formally typeset
Search or ask a question
Author

Mihaela Zavolan

Bio: Mihaela Zavolan is an academic researcher from University of Basel. The author has contributed to research in topics: microRNA & RNA. The author has an hindex of 68, co-authored 162 publications receiving 30453 citations. Previous affiliations of Mihaela Zavolan include Baylor College of Medicine & Swiss Institute of Bioinformatics.
Topics: microRNA, RNA, Polyadenylation, Argonaute, Gene


Papers
More filters
Journal ArticleDOI
29 Jun 2007-Cell
TL;DR: A relatively small set of miRNAs, many of which are ubiquitously expressed, account for most of the differences in miRNA profiles between cell lineages and tissues.

3,687 citations

Journal ArticleDOI
Piero Carninci, Takeya Kasukawa1, Shintaro Katayama, Julian Gough  +194 moreInstitutions (36)
02 Sep 2005-Science
TL;DR: Detailed polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
Abstract: This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.

3,412 citations

Journal ArticleDOI
02 Apr 2010-Cell
TL;DR: This study developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs and revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions.

2,730 citations

Journal ArticleDOI
Yasushi Okazaki, Masaaki Furuno, Takeya Kasukawa1, Jun Adachi, Hidemasa Bono, S. Kondo, Itoshi Nikaido2, Naoki Osato, Rintaro Saito3, Harukazu Suzuki, Itaru Yamanaka, H. Kiyosawa2, Ken Yagi, Yasuhiro Tomaru4, Yuki Hasegawa2, A. Nogami2, Christian Schönbach, Takashi Gojobori, Richard M. Baldarelli, David P. Hill, Carol J. Bult, David A. Hume5, John Quackenbush6, Lynn M. Schriml7, Alexander Kanapin, Hideo Matsuda8, Serge Batalov9, Kirk W. Beisel10, Judith A. Blake, Dirck W. Bradt, Vladimir Brusic, Cyrus Chothia11, Lori E. Corbani, S. Cousins, Emiliano Dalla, Tommaso A. Dragani, Colin F. Fletcher12, Colin F. Fletcher9, Alistair R. R. Forrest5, K. S. Frazer13, Terry Gaasterland14, Manuela Gariboldi, Carmela Gissi15, Adam Godzik16, Julian Gough11, Sean M. Grimmond5, Stefano Gustincich17, Nobutaka Hirokawa18, Ian J. Jackson19, Erich D. Jarvis20, Akio Kanai3, Hideya Kawaji8, Hideya Kawaji1, Yuka Imamura Kawasawa21, Rafal M. Kedzierski21, Benjamin L. King, Akihiko Konagaya, Igor V. Kurochkin, Yong-Hwan Lee6, Boris Lenhard22, Paul A. Lyons23, Donna Maglott7, Lois J. Maltais, Luigi Marchionni, Louise M. McKenzie, Harukata Miki18, Takeshi Nagashima, Koji Numata3, Toshihisa Okido, William J. Pavan7, Geo Pertea6, Graziano Pesole15, Nikolai Petrovsky24, Ramesh S. Pillai, Joan Pontius7, D. Qi, Sridhar Ramachandran, Timothy Ravasi5, Jonathan C. Reed16, Deborah J Reed, Jeffrey G. Reid, Brian Z. Ring, M. Ringwald, Albin Sandelin22, Claudio Schneider, Colin A. Semple19, Mitsutoshi Setou18, K. Shimada25, Razvan Sultana6, Yoichi Takenaka8, Martin S. Taylor19, Rohan D. Teasdale5, Masaru Tomita3, Roberto Verardo, Lukas Wagner7, Claes Wahlestedt22, Y. Wang6, Yoshiki Watanabe25, Christine A. Wells5, Laurens G. Wilming26, Anthony Wynshaw-Boris27, Masashi Yanagisawa21, Ivana V. Yang6, L. Yang, Zheng Yuan5, Mihaela Zavolan14, Yunhui Zhu, Anne M. Zimmer28, Piero Carninci, N. Hayatsu, Tomoko Hirozane-Kishikawa, Hideaki Konno, M. Nakamura, Naoko Sakazume, K. Sato4, Toshiyuki Shiraki, Kazunori Waki, Jun Kawai, Katsunori Aizawa, Takahiro Arakawa, S. Fukuda, A. Hara, W. Hashizume, K. Imotani, Y. Ishii, Masayoshi Itoh, Ikuko Kagawa, A. Miyazaki, K. Sakai, D. Sasaki, K. Shibata, Akira Shinagawa, Ayako Yasunishi, Masayasu Yoshino, Robert H. Waterston29, Eric S. Lander30, Jane Rogers26, Ewan Birney, Yoshihide Hayashizaki 
05 Dec 2002-Nature
TL;DR: The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
Abstract: Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences These are clustered into 33,409 'transcriptional units', contributing 901% of a newly established mouse transcriptome database Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome 41% of all transcriptional units showed evidence of alternative splicing In protein-coding transcripts, 79% of splice variations altered the protein product Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics

1,663 citations

Journal ArticleDOI
30 Apr 2004-Science
TL;DR: The small RNA profile of cells infected by Epstein-Barr virus is recorded and it is shown that EBV expresses several microRNA (miRNA) genes, which are identified viral regulators of host and/or viral gene expression.
Abstract: RNA silencing processes are guided by small RNAs that are derived from double-stranded RNA. To probe for function of RNA silencing during infection of human cells by a DNA virus, we recorded the small RNA profile of cells infected by Epstein-Barr virus (EBV). We show that EBV expresses several microRNA (miRNA) genes. Given that miRNAs function in RNA silencing pathways either by targeting messenger RNAs for degradation or by repressing translation, we identified viral regulators of host and/or viral gene expression.

1,608 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
23 Jan 2009-Cell
TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.

18,036 citations

Journal ArticleDOI
TL;DR: This work overhauled its tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3'UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites.
Abstract: MicroRNAs (miRNAs) are small endogenous RNAs that pair to sites in mRNAs to direct post-transcriptional repression. Many sites that match the miRNA seed (nucleotides 2–7), particularly those in 3 untranslated regions (3UTRs), are preferentially conserved. Here, we overhauled our tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites. The new tool more efficiently incorporates new genomes and more completely controls for background conservation by accounting for mutational biases, dinucleotide conservation rates, and the conservation rates of individual UTRs. The improved background model enabled preferential conservation of a new site type, the “offset 6mer,” to be detected. In total, >45,000 miRNA target sites within human 3UTRs are conserved above background levels, and >60% of human protein-coding genes have been under selective pressure to maintain pairing to miRNAs. Mammalian-specific miRNAs have far fewer conserved targets than do the more broadly conserved miRNAs, even when considering only more recently emerged targets. Although pairing to the 3 end of miRNAs can compensate for seed mismatches, this class of sites constitutes less than 2% of all preferentially conserved sites detected. The new tool enables statistically powerful analysis of individual miRNA target sites, with the probability of preferentially conserved targeting (PCT) correlating with experimental measurements of repression. Our expanded set of target predictions (including conserved 3-compensatory sites), are available at the TargetScan website, which displays the PCT for each site and each predicted target.

7,744 citations

Journal ArticleDOI
Robert H. Waterston1, Kerstin Lindblad-Toh2, Ewan Birney, Jane Rogers3  +219 moreInstitutions (26)
05 Dec 2002-Nature
TL;DR: The results of an international collaboration to produce a high-quality draft sequence of the mouse genome are reported and an initial comparative analysis of the Mouse and human genomes is presented, describing some of the insights that can be gleaned from the two sequences.
Abstract: The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

6,643 citations