scispace - formally typeset
Search or ask a question
Author

Mihai Avram

Bio: Mihai Avram is an academic researcher from University of Lübeck. The author has contributed to research in topics: Psychosis & Schizophrenia. The author has an hindex of 1, co-authored 2 publications receiving 1 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, structural integrity of the cholinergic basal forebrain nuclei (BFCN) was linked with performance on symbol coding task (SCT), a paperpencil-based metric that assesses attention, by correlation and mediation analysis.

11 citations

Journal ArticleDOI
TL;DR: In this paper, a review focused on experiences induced by classic psychedelics, which are substances capable of eliciting powerful psychoactive effects, characterized by distortions/alterations of several neurocognitive processes (e.g., hallucinations).
Abstract: Psychiatry has a well-established tradition of comparing drug-induced experiences to psychotic symptoms, based on shared phenomena such as altered perceptions. The present review focuses on experiences induced by classic psychedelics, which are substances capable of eliciting powerful psychoactive effects, characterized by distortions/alterations of several neurocognitive processes (e.g., hallucinations). Herein we refer to such experiences as psychedelic states. Psychosis is a clinical syndrome defined by impaired reality testing, also characterized by impaired neurocognitive processes (e.g., hallucinations and delusions). In this review we refer to acute phases of psychotic disorders as psychotic states. Neuropharmacological investigations have begun to characterize the neurobiological mechanisms underpinning the shared and distinct neurophysiological changes observed in psychedelic and psychotic states. Mounting evidence indicates changes in thalamic filtering, along with disturbances in cortico-striato-pallido-thalamo-cortical (CSPTC)-circuitry, in both altered states. Notably, alterations in thalamocortical functional connectivity were reported by functional magnetic resonance imaging (fMRI) studies. Thalamocortical dysconnectivity and its clinical relevance are well-characterized in psychotic states, particularly in schizophrenia research. Specifically, studies report hyperconnectivity between the thalamus and sensorimotor cortices and hypoconnectivity between the thalamus and prefrontal cortices, associated with patients' psychotic symptoms and cognitive disturbances, respectively. Intriguingly, studies also report hyperconnectivity between the thalamus and sensorimotor cortices in psychedelic states, correlating with altered visual and auditory perceptions. Taken together, the two altered states appear to share clinically and functionally relevant dysconnectivity patterns. In this review we discuss recent findings of thalamocortical dysconnectivity, its putative extension to CSPTC circuitry, along with its clinical implications and future directions.

Cited by
More filters
Journal ArticleDOI
TL;DR: Neflamapimod (oral small molecule p38α inhibitor) reduces Rab5 activity, reverses endosomal pathology, and restores the numbers and morphology of BFCNs in a mouse model that develops BFCN degeneration as discussed by the authors .
Abstract: The endosome-associated GTPase Rab5 is a central player in the molecular mechanisms leading to degeneration of basal forebrain cholinergic neurons (BFCN), a long-standing target for drug development. As p38α is a Rab5 activator, we hypothesized that inhibition of this kinase holds potential as an approach to treat diseases associated with BFCN loss. Herein, we report that neflamapimod (oral small molecule p38α inhibitor) reduces Rab5 activity, reverses endosomal pathology, and restores the numbers and morphology of BFCNs in a mouse model that develops BFCN degeneration. We also report on the results of an exploratory (hypothesis-generating) phase 2a randomized double-blind 16-week placebo-controlled clinical trial (Clinical trial registration: NCT04001517/EudraCT #2019-001566-15) of neflamapimod in mild-to-moderate dementia with Lewy bodies (DLB), a disease in which BFCN degeneration is an important driver of disease expression. A total of 91 participants, all receiving background cholinesterase inhibitor therapy, were randomized 1:1 between neflamapimod 40 mg or matching placebo capsules (taken orally twice-daily if weight <80 kg or thrice-daily if weight >80 kg). Neflamapimod does not show an effect in the clinical study on the primary endpoint, a cognitive-test battery. On two secondary endpoints, a measure of functional mobility and a dementia rating-scale, improvements were seen that are consistent with an effect on BFCN function. Neflamapimod treatment is well-tolerated with no study drug associated treatment discontinuations. The combined preclinical and clinical observations inform on the validity of the Rab5-based pathogenic model of cholinergic degeneration and provide a foundation for confirmatory (hypothesis-testing) clinical evaluation of neflamapimod in DLB.

9 citations

Journal ArticleDOI
TL;DR: In this paper , the authors focus on the default mode network (DMN), one such functional network that is active during periods of quiet wakefulness and believed to be involved in introspection and planning.

5 citations

Journal ArticleDOI
TL;DR: This scoping review focuses on four dopamine MRI methods that have been employed in patients with schizophrenia so far and describes the underlying signal, outcome measures, and downsides.
Abstract: For decades, aberrant dopamine transmission has been proposed to play a central role in schizophrenia pathophysiology. These theories are supported by human in vivo molecular imaging studies of dopamine transmission, particularly positron emission tomography. However, there are several downsides to such approaches, for example limited spatial resolution or restriction of the measurement to synaptic processes of dopaminergic neurons. To overcome these limitations and to measure complementary aspects of dopamine transmission, magnetic resonance imaging (MRI)-based approaches investigating the macrostructure, metabolism, and connectivity of dopaminergic nuclei, i.e., substantia nigra pars compacta and ventral tegmental area, can be employed. In this scoping review, we focus on four dopamine MRI methods that have been employed in patients with schizophrenia so far: neuromelanin MRI, which is thought to measure long-term dopamine function in dopaminergic nuclei; morphometric MRI, which is assumed to measure the volume of dopaminergic nuclei; diffusion MRI, which is assumed to measure fiber-based structural connectivity of dopaminergic nuclei; and resting-state blood-oxygenation-level-dependent functional MRI, which is thought to measure functional connectivity of dopaminergic nuclei based on correlated blood oxygenation fluctuations. For each method, we describe the underlying signal, outcome measures, and downsides. We present the current state of research in schizophrenia and compare it to other disorders with either similar (psychotic) symptoms, i.e., bipolar disorder and major depressive disorder, or dopaminergic abnormalities, i.e., substance use disorder and Parkinson’s disease. Finally, we discuss overarching issues and outline future research questions.

2 citations

Journal ArticleDOI
TL;DR: In this article , the authors investigated whether spatial navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment in SCD individuals, and they found that SCD participants with good spatial navigation performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of sub cortical nuclei, and an increased risk for progression to MCI.
Abstract: Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer's disease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment in SCD individuals.One hundred and eighty participants were enrolled: those with SCD (n = 80), normal controls (NCs, n = 77), and mild cognitive impairment (MCI, n = 23). SCD participants were further divided into the SCD-good (G-SCD, n = 40) group and the SCD-bad (B-SCD, n = 40) group according to their spatial navigation performance. Volumes of subcortical structures were calculated and compared among the four groups, including basal forebrain, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Topological properties of the subcortical structural covariance network were also calculated. With an interval of 1.5 years ± 12 months of follow-up, the progression rate to MCI was compared between the G-SCD and B-SCD groups.Volumes of the basal forebrain, the right hippocampus, and their respective subfields differed significantly among the four groups (p < 0.05, false discovery rate corrected). The B-SCD group showed lower volumes in the basal forebrain than the G-SCD group, especially in the Ch4p and Ch4a-i subfields. Furthermore, the structural covariance network of the basal forebrain and right hippocampal subfields showed that the B-SCD group had a larger Lambda than the G-SCD group, which suggested weakened network integration in the B-SCD group. At follow-up, the B-SCD group had a significantly higher conversion rate to MCI than the G-SCD group.Compared to SCD participants with good spatial navigation performance, SCD participants with bad performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of subcortical nuclei, and an increased risk of progression to MCI. Our findings indicated that spatial navigation may have great potential to identify SCD subjects at higher risk of clinical progression, which may contribute to making more precise clinical decisions for SCD individuals who seek medical help.

2 citations

Journal ArticleDOI
TL;DR: In this article , the authors examined microstructural neuroimaging measures of the cholinergic nuclei in patients with untreated psychosis and used magnetic resonance spectroscopy (MRS) and transcriptomic data to support their findings.
Abstract: Cholinergic dysfunction has been implicated in the pathophysiology of psychosis and psychiatric disorders such as schizophrenia, depression, and bipolar disorder. The basal forebrain (BF) cholinergic nuclei, defined as cholinergic cell groups Ch1-3 and Ch4 (Nucleus Basalis of Meynert; NBM), provide extensive cholinergic projections to the rest of the brain. Here, we examined microstructural neuroimaging measures of the cholinergic nuclei in patients with untreated psychosis (~31 weeks of psychosis, <2 defined daily dose of antipsychotics) and used magnetic resonance spectroscopy (MRS) and transcriptomic data to support our findings. We used a cytoarchitectonic atlas of the BF to map the nuclei and obtained measures of myelin (quantitative T1, or qT1 as myelin surrogate) and microstructure (axial diffusion; AxD). In a clinical sample (n = 85; 29 healthy controls, 56 first-episode psychosis), we found significant correlations between qT1 of Ch1-3, left NBM and MRS-based dorsal anterior cingulate choline in healthy controls while this relationship was disrupted in FEP (p > 0.05). Case-control differences in qT1 and AxD were observed in the Ch1-3, with increased qT1 (reflecting reduced myelin content) and AxD (reflecting reduced axonal integrity). We found clinical correlates between left NBM qT1 with manic symptom severity, and AxD with negative symptom burden in FEP. Intracortical and subcortical myelin maps were derived and correlated with BF myelin. BF-cortical and BF-subcortical myelin correlations demonstrate known projection patterns from the BF. Using data from the Allen Human Brain Atlas, cholinergic nuclei showed significant enrichment for schizophrenia and depression-related genes. Cell-type specific enrichment indicated enrichment for cholinergic neuron markers as expected. Further relating the neuroimaging correlations to transcriptomics demonstrated links with cholinergic receptor genes and cell type markers of oligodendrocytes and cholinergic neurons, providing biological validity to the measures. These results provide genetic, neuroimaging, and clinical evidence for cholinergic dysfunction in schizophrenia.

1 citations