scispace - formally typeset
Search or ask a question
Author

Mihail Barboiu

Bio: Mihail Barboiu is an academic researcher from University of Montpellier. The author has contributed to research in topics: Membrane & Supramolecular chemistry. The author has an hindex of 44, co-authored 239 publications receiving 5789 citations. Previous affiliations of Mihail Barboiu include University of Victoria & University of Provence.


Papers
More filters
Journal ArticleDOI
TL;DR: This system represents a motional dynamic device which performs a mechano-chemical process, realizing alternating extension/contraction motions triggered by ion binding, and achieves a linear motor-type of action of very large stroke amplitude fueled by ionic processes.
Abstract: Dynamic chemical devices involve morphological or constitutional modifications in molecular or supramolecular systems, induced by internal or external physical or chemical triggers. Reversible changes in shape result in molecular motions and define motional dynamic devices presenting mechanical-like actions of various types. Suitably designed polyheterocyclic strands such as compounds 1–5 wrap into helical conformations. The binding of lead(II) ions to the coordination subunits contained in the strand leads to complete uncoiling and yields a polymetallic complex presenting a fully extended shape. The addition of a cryptand complexing agent that strongly binds lead(II) ions and releases them under protonation allows a reversible pH-modulation of lead(II) levels in the medium, which in turn induces coiling/uncoiling of the molecular strand. This system thus represents a motional dynamic device which performs a mechano-chemical process, realizing alternating extension/contraction motions triggered by ion binding. It achieves a linear motor-type of action of very large stroke amplitude fueled by ionic processes.

237 citations

Journal ArticleDOI
TL;DR: The channel results are interpreted as arising from discreet stacks of ureido crown ethers where the transport of cations would occur via the macrocycles, admixed with larger pores formed by association of the crown ether headgroups around a central large pore.
Abstract: The self-assembly of ureido crown-ether derivatives has been examined in homogeneous solution, in the solid state, and in planar bilayer membranes. The self-assembly is driven by head-to-tail hydrogen bonding between the urea functional groups. Dimers and higher oligomers are formed in CDCl3 solution as assessed by the change in the ureido NH chemical shift as a function of concentration. Single-crystal X-ray diffraction shows that an antiparallel association of the ureas produces columnar channels composed of face-to-face crown ethers. Powder X-ray diffraction studies also show the presence of a minor phase based upon a parallel urea association leading to an alternative columnar arrangement of the crown ethers. In bilayer membranes at low concentration of ureido crown ether added, membrane disruption is observed together with rare single-channel openings, but at higher concentration, a rich array of interconverting channel conductance states is observed. The channel results are interpreted as arising from discreet stacks of ureido crown ethers where the transport of cations would occur via the macrocycles, admixed with larger pores formed by association of the crown ether headgroups around a central large pore.

151 citations

Journal ArticleDOI
TL;DR: The incipient development of the first artificial water channels systems is discussed, including only systems that integrate synthetic elements in their water selective translocation unit and exclude peptide channels because their sequences derive from the proteins in natural channels.
Abstract: Within biological systems, natural channels and pores transport metabolites across the cell membranes. Researchers have explored artificial ion-channel architectures as potential mimics of natural ionic conduction. All these synthetic systems have produced an impressive collection of alternative artificial ion-channels.Amazingly, researchers have made far less progress in the area of synthetic water channels. The development of synthetic biomimetic water channels and pores could contribute to a better understanding of the natural function of protein channels and could offer new strategies to generate highly selective, advanced water purification systems. Despite the imaginative work by synthetic chemists to produce sophisticated architectures that confine water clusters, most synthetic water channels have used natural proteins channels as the selectivity components, embedded in the diverse arrays of bioassisted artificial systems. These systems combine natural proteins that present high water conductance ...

144 citations

Journal ArticleDOI
TL;DR: In this article, the sol-gel process is used for the preparation of organic-inorganic hybrid materials, which offer specific advantages for the synthesis of artificial membranes exhibiting high selectivity and flux, as well as good thermal and chemical resistance.

131 citations

Journal ArticleDOI
TL;DR: The triple features of self-organization, dynamic interconversion, and potential addressability displayed by the processes described trace a self-fabrication approach to nanoscience and nanotechnology.
Abstract: The binding of lead(II) cations to the terpyridine-type subunits of the helical ligand 1 leads to the self-assembly of different polynuclear metallosupramolecular architectures of nanometric size. Three different entities are generated and may be interconverted as a function of metal/ligand stoichiometry: a [4 x 4]Pb(16)(II) grid-type array 2, a [4 # 4]Pb(12)(II) double-cross species 4, and an intermediate complex 3. The structures of 2 and 4 have been confirmed by X-ray crystallography; that of 3 is based on NMR spectral data. The interconversion of the three species generates dynamic diversity and represents an expression of constitutional dynamic chemistry. In the course of ion binding, the helical molecules of ligand 1 unwrap to yield fully extended strands arranged in perpendicular fashion in the architectures 2-4 generated. This process amounts to molecular motions in two directions which confer to the present systems characteristics of two-dimensional nanomechanical devices, capable of performing 2D-contraction/extension motions. The triple features of self-organization, dynamic interconversion, and potential addressability displayed by the processes described trace a self-fabrication approach to nanoscience and nanotechnology.

130 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: The exciting successes in taming molecular-level movement thus far are outlined, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion are highlighted.
Abstract: The widespread use of controlled molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular systems, which by and large rely upon electronic and chemical effects to carry out their functions, and the machines of the macroscopic world, which utilize the synchronized movements of smaller parts to perform specific tasks. This is a scientific area of great contemporary interest and extraordinary recent growth, yet the notion of molecular-level machines dates back to a time when the ideas surrounding the statistical nature of matter and the laws of thermodynamics were first being formulated. Here we outline the exciting successes in taming molecular-level movement thus far, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion. We also highlight some of the issues and challenges that still need to be overcome.

2,301 citations

Journal ArticleDOI
TL;DR: The latest generations of sophisticated synthetic molecular machine systems in which the controlled motion of subcomponents is used to perform complex tasks are discussed, paving the way to applications and the realization of a new era of “molecular nanotechnology”.
Abstract: The widespread use of molecular machines in biology has long suggested that great rewards could come from bridging the gap between synthetic molecular systems and the machines of the macroscopic world. In the last two decades, it has proved possible to design synthetic molecular systems with architectures where triggered large amplitude positional changes of submolecular components occur. Perhaps the best way to appreciate the technological potential of controlled molecular-level motion is to recognize that nanomotors and molecular-level machines lie at the heart of every significant biological process. Over billions of years of evolution, nature has not repeatedly chosen this solution for performing complex tasks without good reason. When mankind learns how to build artificial structures that can control and exploit molecular level motion and interface their effects directly with other molecular-level substructures and the outside world, it will potentially impact on every aspect of functional molecule and materials design. An improved understanding of physics and biology will surely follow. The first steps on the long path to the invention of artificial molecular machines were arguably taken in 1827 when the Scottish botanist Robert Brown observed the haphazard motion of tiny particles under his microscope.1,2 The explanation for Brownian motion, that it is caused by bombardment of the particles by molecules as a consequence of the kinetic theory of matter, was later provided by Einstein, followed by experimental verification by Perrin.3,4 The random thermal motion of molecules and its implications for the laws of thermodynamics in turn inspired Gedankenexperiments (“thought experiments”) that explored the interplay (and apparent paradoxes) of Brownian motion and the Second Law of Thermodynamics. Richard Feynman’s famous 1959 lecture “There’s plenty of room at the bottom” outlined some of the promise that manmade molecular machines might hold.5,6 However, Feynman’s talk came at a time before chemists had the necessary synthetic and analytical tools to make molecular machines. While interest among synthetic chemists began to grow in the 1970s and 1980s, progress accelerated in the 1990s, particularly with the invention of methods to make mechanically interlocked molecular systems (catenanes and rotaxanes) and control and switch the relative positions of their components.7−24 Here, we review triggered large-amplitude motions in molecular structures and the changes in properties these can produce. We concentrate on conformational and configurational changes in wholly covalently bonded molecules and on catenanes and rotaxanes in which switching is brought about by various stimuli (light, electrochemistry, pH, heat, solvent polarity, cation or anion binding, allosteric effects, temperature, reversible covalent bond formation, etc.). Finally, we discuss the latest generations of sophisticated synthetic molecular machine systems in which the controlled motion of subcomponents is used to perform complex tasks, paving the way to applications and the realization of a new era of “molecular nanotechnology”. 1.1. The Language Used To Describe Molecular Machines Terminology needs to be properly and appropriately defined and these meanings used consistently to effectively convey scientific concepts. Nowhere is the need for accurate scientific language more apparent than in the field of molecular machines. Much of the terminology used to describe molecular-level machines has its origins in observations made by biologists and physicists, and their findings and descriptions have often been misinterpreted and misunderstood by chemists. In 2007 we formalized definitions of some common terms used in the field (e.g., “machine”, “switch”, “motor”, “ratchet”, etc.) so that chemists could use them in a manner consistent with the meanings understood by biologists and physicists who study molecular-level machines.14 The word “machine” implies a mechanical movement that accomplishes a useful task. This Review concentrates on systems where a stimulus triggers the controlled, relatively large amplitude (or directional) motion of one molecular or submolecular component relative to another that can potentially result in a net task being performed. Molecular machines can be further categorized into various classes such as “motors” and “switches” whose behavior differs significantly.14 For example, in a rotaxane-based “switch”, the change in position of a macrocycle on the thread of the rotaxane influences the system only as a function of state. Returning the components of a molecular switch to their original position undoes any work done, and so a switch cannot be used repetitively and progressively to do work. A “motor”, on the other hand, influences a system as a function of trajectory, meaning that when the components of a molecular motor return to their original positions, for example, after a 360° directional rotation, any work that has been done is not undone unless the motor is subsequently rotated by 360° in the reverse direction. This difference in behavior is significant; no “switch-based” molecular machine can be used to progressively perform work in the way that biological motors can, such as those from the kinesin, myosin, and dynein superfamilies, unless the switch is part of a larger ratchet mechanism.14

1,434 citations