scispace - formally typeset
Search or ask a question
Author

Mihir Bellare

Bio: Mihir Bellare is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Encryption & Cryptography. The author has an hindex of 107, co-authored 344 publications receiving 52924 citations. Previous affiliations of Mihir Bellare include University of California, Los Angeles & Massachusetts Institute of Technology.


Papers
More filters
Proceedings ArticleDOI
Mihir Bellare1, Phillip Rogaway1
01 Dec 1993
TL;DR: It is argued that the random oracles model—where all parties have access to a public random oracle—provides a bridge between cryptographic theory and cryptographic practice, and yields protocols much more efficient than standard ones while retaining many of the advantages of provable security.
Abstract: We argue that the random oracle model—where all parties have access to a public random oracle—provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol PR for the random oracle model, and then replacing oracle accesses by the computation of an “appropriately chosen” function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including encryption, signatures, and zero-knowledge proofs.

5,313 citations

01 Feb 1997
TL;DR: This document describes HMAC, a mechanism for message authentication using cryptographic hash functions that can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key.
Abstract: This document describes HMAC, a mechanism for message authentication using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function.

2,265 citations

Book ChapterDOI
Mihir Bellare1, Phillip Rogaway1
22 Aug 1993
TL;DR: This work provides the first formal treatment of entity authentication and authenticated key distribution appropriate to the distributed environment and presents a definition, protocol, and proof that the protocol meets its goal, assuming only the existence of a pseudorandom function.
Abstract: We provide the first formal treatment of entity authentication and authenticated key distribution appropriate to the distributed environment. Addressed in detail are the problems of mutual authentication and authenticated key exchange for the symmetric, two-party setting. For each we present a definition, protocol, and proof that the protocol meets its goal, assuming only the existence of a pseudorandom function.

1,926 citations

Book ChapterDOI
18 Aug 1996
TL;DR: Two new, simple, and practical constructions of message authentication schemes based on a cryptographic hash function, NMAC and HMAC, are proven to be secure as long as the underlying hash function has some reasonable cryptographic strengths.
Abstract: The use of cryptographic hash functions like MD5 or SHA-1 for message authentication has become a standard approach in many applications, particularly Internet security protocols. Though very easy to implement, these mechanisms are usually based on ad hoc techniques that lack a sound security analysis. We present new, simple, and practical constructions of message authentication schemes based on a cryptographic hash function. Our schemes, NMAC and HMAC, are proven to be secure as long as the underlying hash function has some reasonable cryptographic strengths. Moreover we show, in a quantitative way, that the schemes retain almost all the security of the underlying hash function. The performance of our schemes is essentially that of the underlying hash function. Moreover they use the hash function (or its compression function) as a black box, so that widely available library code or hardwair can be used to implement them in a simple way, and replaceability of the underlying hash function is easily supported.

1,815 citations

Book ChapterDOI
14 May 2000
TL;DR: Correctness for the idea at the center of the Encrypted Key-Exchange protocol of Bellovin and Merritt is proved: it is proved security, in an ideal-cipher model, of the two-flow protocol at the core of EKE.
Abstract: Password-based protocols for authenticated key exchange (AKE) are designed to work despite the use of passwords drawn from a space so small that an adversary might well enumerate, off line, all possible passwords. While several such protocols have been suggested, the underlying theory has been lagging. We begin by defining a model for this problem, one rich enough to deal with password guessing, forward secrecy, server compromise, and loss of session keys. The one model can be used to define various goals. We take AKE (with "implicit" authentication) as the "basic" goal, and we give definitions for it, and for entity-authentication goals as well. Then we prove correctness for the idea at the center of the Encrypted Key-Exchange (EKE) protocol of Bellovin and Merritt: we prove security, in an ideal-cipher model, of the two-flow protocol at the core of EKE.

1,437 citations


Cited by
More filters
Book
01 Jan 1996
TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.
Abstract: From the Publisher: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.

13,597 citations

Journal ArticleDOI
TL;DR: This survey is directed to those who want to approach this complex discipline and contribute to its development, and finds that still major issues shall be faced by the research community.
Abstract: This paper addresses the Internet of Things. Main enabling factor of this promising paradigm is the integration of several technologies and communications solutions. Identification and tracking technologies, wired and wireless sensor and actuator networks, enhanced communication protocols (shared with the Next Generation Internet), and distributed intelligence for smart objects are just the most relevant. As one can easily imagine, any serious contribution to the advance of the Internet of Things must necessarily be the result of synergetic activities conducted in different fields of knowledge, such as telecommunications, informatics, electronics and social science. In such a complex scenario, this survey is directed to those who want to approach this complex discipline and contribute to its development. Different visions of this Internet of Things paradigm are reported and enabling technologies reviewed. What emerges is that still major issues shall be faced by the research community. The most relevant among them are addressed in details.

12,539 citations

Patent
30 Sep 2010
TL;DR: In this article, the authors proposed a secure content distribution method for a configurable general-purpose electronic commercial transaction/distribution control system, which includes a process for encapsulating digital information in one or more digital containers, a process of encrypting at least a portion of digital information, a protocol for associating at least partially secure control information for managing interactions with encrypted digital information and/or digital container, and a process that delivering one or multiple digital containers to a digital information user.
Abstract: PROBLEM TO BE SOLVED: To solve the problem, wherein it is impossible for an electronic content information provider to provide commercially secure and effective method, for a configurable general-purpose electronic commercial transaction/distribution control system. SOLUTION: In this system, having at least one protected processing environment for safely controlling at least one portion of decoding of digital information, a secure content distribution method comprises a process for encapsulating digital information in one or more digital containers; a process for encrypting at least a portion of digital information; a process for associating at least partially secure control information for managing interactions with encrypted digital information and/or digital container; a process for delivering one or more digital containers to a digital information user; and a process for using a protected processing environment, for safely controlling at least a portion of the decoding of the digital information. COPYRIGHT: (C)2006,JPO&NCIPI

7,643 citations

Book ChapterDOI
19 Aug 2001
TL;DR: This work proposes a fully functional identity-based encryption scheme (IBE) based on the Weil pairing that has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational Diffie-Hellman problem.
Abstract: We propose a fully functional identity-based encryption scheme (IBE). The scheme has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational Diffie-Hellman problem. Our system is based on the Weil pairing. We give precise definitions for secure identity based encryption schemes and give several applications for such systems.

7,083 citations

Book ChapterDOI
02 May 1999
TL;DR: A new trapdoor mechanism is proposed and three encryption schemes are derived : a trapdoor permutation and two homomorphic probabilistic encryption schemes computationally comparable to RSA, which are provably secure under appropriate assumptions in the standard model.
Abstract: This paper investigates a novel computational problem, namely the Composite Residuosity Class Problem, and its applications to public-key cryptography. We propose a new trapdoor mechanism and derive from this technique three encryption schemes : a trapdoor permutation and two homomorphic probabilistic encryption schemes computationally comparable to RSA. Our cryptosystems, based on usual modular arithmetics, are provably secure under appropriate assumptions in the standard model.

7,008 citations