scispace - formally typeset
Search or ask a question
Author

Mike Boots

Bio: Mike Boots is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Population & Virulence. The author has an hindex of 55, co-authored 198 publications receiving 9098 citations. Previous affiliations of Mike Boots include Kyoto University & University of Sheffield.


Papers
More filters
Journal ArticleDOI
05 Feb 2016-Science
TL;DR: A phylogeographic analysis shows that DWV is globally distributed in honeybees, having recently spread from a common source, the European honeybee Apis mellifera, and exhibits epidemic growth and transmission that is predominantly mediated by European and North American honeybee populations and driven by trade and movement of honeybee colonies.
Abstract: Deformed wing virus (DWV) and its vector, the mite Varroa destructor, are a major threat to the world’s honeybees. Although the impact of Varroa on colony-level DWV epidemiology is evident, we have little understanding of wider DWV epidemiology and the role that Varroa has played in its global spread. A phylogeographic analysis shows that DWV is globally distributed in honeybees, having recently spread from a common source, the European honeybee Apis mellifera. DWV exhibits epidemic growth and transmission that is predominantly mediated by European and North American honeybee populations and driven by trade and movement of honeybee colonies. DWV is now an important reemerging pathogen of honeybees, which are undergoing a worldwide manmade epidemic fueled by the direct transmission route that the Varroa mite provides.

360 citations

Journal ArticleDOI
TL;DR: It is shown that this ability of the pathogen to infect distant individuals in a spatially structured host population leads to the evolution of a more virulent pathogen, suggesting that if the world is getting ‘smaller’ (as populations become more connected) diseases may evolve higher virulence.
Abstract: Why are some discases more virulent than others? Vector-borne diseases such as malaria and water-borne diseases such as cholera are generally more virulent than diseases spread by direct contagion. One factor that characterizes both vector- and water-borne diseases is their ability to spread over long distances, thus causing infection of susceptible individuals distant from the infected individual. Here we show that this ability of the pathogen to infect distant individuals in a spatially structured host population leads to the evolution of a more virulent pathogen. We use a lattice model in which reproduction is local but infection can vary between completely local to completely global. With completely global infection the evolutionarily stable strategy (ESS) is the same as in mean-field models while a lower virulence is predicted as infection becomes more local. There is characteristically a period of relatively moderate increase in virulence followed by a more rapid rise with increasing proportions of global infection as we move beyond a 'critical connectivity'. In the light of recent work emphasizing the existence of 'small world' networks in human populations, our results suggests that if the world is getting 'smaller'--as populations become more connected--diseases may evolve higher virulence.

344 citations

Journal ArticleDOI
TL;DR: It is shown that parapoxvirus is likely to have played a crucial role in the red squirrel decline even though the prevalence of infection is low, and conservationists should pay particular attention to pathogens, even when they occur at low prevalence.
Abstract: Although a parapoxvirus harmful to red squirrels is present in UK squirrel populations it has not been considered a major cause of red squirrel decline, and replacement by the introduced grey squirrel, mainly because diseased individuals are rarely observed. By developing a generic model we show that parapoxvirus is likely to have played a crucial role in the red squirrel decline even though the prevalence of infection is low. Conservationists are quite rightly concerned with the invasion of exotic organisms such as the grey squirrel. Our work emphasizes that they, along with other ecologists, should pay particular attention to pathogens, even when they occur at low prevalence.

331 citations

Journal ArticleDOI
TL;DR: It is demonstrated that moderate cross-protective immunity gives rise to persistent out-of-phase oscillations similar to those observed in the data, but that strong or weak cross-protection or cross-enhancement only produces in-phase patterns.
Abstract: Dengue virus, the causative agent of dengue fever and its more serious manifestation dengue hemorrhagic fever, is widespread throughout tropical and subtropical regions. The virus exists as four distinct serotypes, all of which have cocirculated in Bangkok for several decades with epidemic outbreaks occurring every 8-10 years. We analyze time-series data of monthly infection incidence, revealing a distinctive pattern with epidemics of serotypes 1, 2, and 3 occurring at approximately the same time and an isolated epidemic of serotype 4 occurring in the intervening years. Phylogenetic analysis of virus samples collected over the same period shows that clade replacement events are linked to the epidemic cycle and indicates that there is an interserotypic immune reaction. Using an epidemic model with stochastic seasonal forcing showing 8- to 10-year epidemic oscillations, we demonstrate that moderate cross-protective immunity gives rise to persistent out-of-phase oscillations similar to those observed in the data, but that strong or weak cross-protection or cross-enhancement only produces in-phase patterns. This behavior suggests that the epidemic pattern observed in Bangkok is the result of cross-protective immunity and may be significantly altered by changes in the interserotypic immune reaction.

256 citations

Journal ArticleDOI
TL;DR: Genotypic trade-offs with resistance to a virus in a lepidopteran host are examined by a micro-evolutionary selection experiment and selected moths were 1.96-fold more resistant to infection than those derived from the virus-free control populations.
Abstract: When microbial agents are used as pest-control agents, resistance in the host may be selected for. If resistance occurs there are potentially fitness costs due to trade-offs between resistance and other life-history traits. Genotypic trade-offs with resistance to a virus in a lepidopteran host are examined by a micro-evolutionary selection experiment. Six populations of the Indian meal moth, Plodia interpunctella, were established, three of which supported a granulosis virus infection (selected insects) while the remaining three acted as virus-free controls. After a period of 2 years, bioassays with the virus showed that selected moths were 1.96-fold more resistant to infection (LD 50 s) than those derived from the virus-free control populations

245 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
08 Mar 2001-Nature
TL;DR: This work aims to understand how an enormous network of interacting dynamical systems — be they neurons, power stations or lasers — will behave collectively, given their individual dynamics and coupling architecture.
Abstract: The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems-be they neurons, power stations or lasers-will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.

7,665 citations

Book
28 Oct 2007
TL;DR: Mathematical modeling of infectious dis-eases has progressed dramatically over the past 3 decades and continues to be a valuable tool at the nexus of mathematics, epidemiol-ogy, and infectious diseases research.
Abstract: By Matthew James Keelingand Pejman RohaniPrinceton, NJ: Princeton University Press,2008.408 pp., Illustrated. $65.00 (hardcover).Mathematical modeling of infectious dis-eases has progressed dramatically over thepast 3 decades and continues to flourishat the nexus of mathematics, epidemiol-ogy, and infectious diseases research. Nowrecognized as a valuable tool, mathemat-ical models are being integrated into thepublic health decision-making processmore than ever before. However, despiterapid advancements in this area, a formaltraining program for mathematical mod-eling is lacking, and there are very fewbooks suitable for a broad readership. Tosupport this bridging science, a commonlanguage that is understood in all con-tributing disciplines is required.

3,467 citations

30 Apr 1984
TL;DR: A review of the literature on optimal foraging can be found in this article, with a focus on the theoretical developments and the data that permit tests of the predictions, and the authors conclude that the simple models so far formulated are supported by available data and that they are optimistic about the value both now and in the future.
Abstract: Beginning with Emlen (1966) and MacArthur and Pianka (1966) and extending through the last ten years, several authors have sought to predict the foraging behavior of animals by means of mathematical models. These models are very similar,in that they all assume that the fitness of a foraging animal is a function of the efficiency of foraging measured in terms of some "currency" (Schoener, 1971) -usually energy- and that natural selection has resulted in animals that forage so as to maximize this fitness. As a result of these similarities, the models have become known as "optimal foraging models"; and the theory that embodies them, "optimal foraging theory." The situations to which optimal foraging theory has been applied, with the exception of a few recent studies, can be divided into the following four categories: (1) choice by an animal of which food types to eat (i.e., optimal diet); (2) choice of which patch type to feed in (i.e., optimal patch choice); (3) optimal allocation of time to different patches; and (4) optimal patterns and speed of movements. In this review we discuss each of these categories separately, dealing with both the theoretical developments and the data that permit tests of the predictions. The review is selective in the sense that we emphasize studies that either develop testable predictions or that attempt to test predictions in a precise quantitative manner. We also discuss what we see to be some of the future developments in the area of optimal foraging theory and how this theory can be related to other areas of biology. Our general conclusion is that the simple models so far formulated are supported are supported reasonably well by available data and that we are optimistic about the value both now and in the future of optimal foraging theory. We argue, however, that these simple models will requre much modification, espicially to deal with situations that either cannot easily be put into one or another of the above four categories or entail currencies more complicated that just energy.

2,709 citations