scispace - formally typeset
Search or ask a question
Author

Mike D. Flannigan

Bio: Mike D. Flannigan is an academic researcher from University of Alberta. The author has contributed to research in topics: Fire regime & Climate change. The author has an hindex of 71, co-authored 211 publications receiving 21327 citations. Previous affiliations of Mike D. Flannigan include Canadian Forest Service & University of Toronto.
Topics: Fire regime, Climate change, Boreal, Taiga, Vegetation


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of disturbances caused by climate change on forestshave have been studied and the authors have focused on the ability of species to tolerate tem-perature and moisture changes and to disperse.
Abstract: tudies of the effects of climate change on forestshave focused on the ability of species to tolerate tem-perature and moisture changes and to disperse,but they haveignored the effects of disturbances caused by climate change(e.g.,Ojima et al.1991).Yet modeling studies indicate the im-portance of climate effects on disturbance regimes (He et al.1999). Local, regional, and global changes in temperatureand precipitation can influence the occurrence, timing, fre-quency,duration,extent,and intensity of disturbances (Baker1995, Turner et al. 1998). Because trees can survive fromdecades to centuries and take years to become established,climate-change impacts are expressed in forests, in part,through alterations in disturbance regimes (Franklin et al.1992, Dale et al. 2000).Disturbances,both human-induced and natural,shape for-est systems by influencing their composition,structure,andfunctional processes.Indeed,the forests of the United Statesare molded by their land-use and disturbance history.Withinthe United States,natural disturbances having the greatest ef-fects on forests include fire,drought,introduced species,in-sect and pathogen outbreaks, hurricanes, windstorms, icestorms, and landslides (Figure 1). Each disturbance affectsforests differently. Some cause large-scale tree mortality,whereas others affect community structure and organizationwithout causing massive mortality (e.g., ground fires). For-est disturbances influence how much carbon is stored intrees or dead wood. All these natural disturbances interactwith human-induced effects on the environment,such as airpollution and land-use change resulting from resource ex-traction, agriculture, urban and suburban expansion, andrecreation.Some disturbances can be functions of both nat-ural and human conditions (e.g., forest fire ignition andspread) (Figure 2).

2,080 citations

Journal ArticleDOI
TL;DR: A review of the current understanding of what the future may bring with respect to wildland fire and future options for research and management is presented in this paper. But, as stated in the review, "wildland fire is a global phenomenon, and a result of interactions between climate, fuels, and people".
Abstract: Wildland fire is a global phenomenon, and a result of interactions between climate–weather, fuels and people. Our climate is changing rapidly primarily through the release of greenhouse gases that may have profound and possibly unexpected impacts on global fire activity. The present paper reviews the current understanding of what the future may bring with respect to wildland fire and discusses future options for research and management. To date, research suggests a general increase in area burned and fire occurrence but there is a lot of spatial variability, with some areas of no change or even decreases in area burned and occurrence. Fire seasons are lengthening for temperate and boreal regions and this trend should continue in a warmer world. Future trends of fire severity and intensity are difficult to determine owing to the complex and non-linear interactions between weather, vegetation and people. Improved fire data are required along with continued global studies that dynamically include weather, vegetation, people, and other disturbances. Lastly, we need more research on the role of policy, practices and human behaviour because most of the global fire activity is directly attributable to people.

1,177 citations

Journal ArticleDOI
TL;DR: The Large Fire Database (LFDB) as mentioned in this paper provides information on fire location, start date, final size, cause, and suppression action for all fires larger than 200 ha in area for Canada for the 1959-1997 period.
Abstract: [1] A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959–1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ∼97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ∼2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.

888 citations

Journal ArticleDOI
TL;DR: In this article, historical relationship between weather, the Canadian fire weather index (FWI) system components and area burned in Canadian ecozones were analyzed on a monthly basis in tandem with output from the Canadian and the Hadley Centre GCMs to project future area burned.
Abstract: Historical relationships between weather, the Canadian fire weather index (FWI) system components and area burned in Canadian ecozones were analysed on a monthly basis in tandem with output from the Canadian and the Hadley Centre GCMs to project future area burned. Temperature and fuel moisture were the variables best related to historical monthly area burned with 36-64% of the variance explained depending on ecozone. Our results suggest significant increases in future area burned although there are large regional variations in fire activity. This was especially true for the Canadian GCM where some ecozones show little change in area burned, however area burned was not projected to decrease in any of the ecozones modelled. On average, area burned in Canada is projected to increase by 74-118% by the end of this century in a 3 × CO2 scenario. These estimates do not explicitly take into account any changes in vegetation, ignitions, fire season length, and human activity (fire management and land use activities) that may influence area burned. However, the estimated increases in area burned would have significant ecological, economic and social impacts for Canada.

852 citations

Journal ArticleDOI
TL;DR: Forest fires could be viewed as an agent of change for US forests as the fire regime will respond rapidly to climate warming, which has the potential to overshadow the direct effects of climate change on species distribution and migration.

826 citations


Cited by
More filters
01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the first global assessment of recent tree mortality attributed to drought and heat stress and identify key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system.

5,811 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations