scispace - formally typeset
Search or ask a question
Author

Mike Irwin

Bio: Mike Irwin is an academic researcher from University of Cambridge. The author has contributed to research in topics: Galaxy & Milky Way. The author has an hindex of 136, co-authored 755 publications receiving 83262 citations. Previous affiliations of Mike Irwin include University of New South Wales & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the discovery of a previously uncataloged Local Group galaxy in the constellation Cetus was reported, which appears to be a dwarf spheroidal of type dE3.
Abstract: We report the discovery of a previously uncataloged Local Group galaxy in the constellation Cetus. Faintly visible on UKST survey plates, it has a smooth, diffuse appearance and appears to be a dwarf spheroidal of type dE3.5. A color-magnitude diagram in V, V-I shows a clear giant branch but no sign of recent star formation. From the position of the tip of the giant branch, we derive a reddening-corrected distance modulus of 24.45 ± 0.15 and a metallicity of -1.9 ± 0.2. With an implied heliocentric distance of 775 ± 50 kpc, and a corresponding Local Group barycentric distance of 615 kpc, the Cetus dwarf lies well within the boundaries of the Local Group, and although it currently lacks a radial velocity measurement, it is undoubtedly a member of the Local Group. The nearest Local Group galaxies are WLM and IC 1613 at angular separations of 73 and 163 and roughly 175 and 230 kpc total distance, respectively. Although the Cetus dwarf is unlikely to be directly associated with any other Local Group galaxy, it does lie in the general direction of the extension of the Local Group toward the Sculptor Group.

81 citations

Journal ArticleDOI
TL;DR: In this paper, the general data reduction methods used in processing the data from the Carlsberg Meridian Telescope CCD drift scan survey are described. And an efficient method to calibrate the fluctuations in the positions of the images caused by atmospheric turbulence is described.
Abstract: This paper contains the general data reduction methods used in processing the data from the Carlsberg Meridian Telescope CCD drift scan survey. An efficient method to calibrate the fluctuations in the positions of the images caused by atmospheric turbulence is described. The external accuracy achieved is 36 mas in right ascension and declination. A description of the recently released catalogue is given.

80 citations

Journal ArticleDOI
TL;DR: In this paper, proper motion measurements for carbon stars found during the APM Survey for Cool Carbon Stars in the Galactic halo are presented, and the results support the use of JHK photometry as a dwarf/giant discriminator.
Abstract: We present proper-motion measurements for carbon stars found during the APM Survey for Cool Carbon Stars in the Galactic halo as reported in an earlier paper by Totten & Irwin. Measurements are obtained using a combination of POSSI, POSSII and UKST survey plates supplemented where necessary by CCD frames taken at the Isaac Newton Telescope. We find no significant proper motion for any of the new APM colour-selected carbon stars and so conclude that there are no dwarf carbon stars present within this sample. We also present proper-motion measurements for three previously known dwarf carbon stars and demonstrate that these measurements agree favourably with those previously quoted in the literature, verifying our method of determining proper motions. Results from a complimentary program of JHK photometry obtained at the South African Astronomical Observatory are also presented. Dwarf carbon stars are believed to have anomalous near-infrared colours, and this feature is used for further investigation of the nature of the APM carbon stars. Our results support the use of JHK photometry as a dwarf/giant discriminator and also reinforce the conclusion that none of the new APM-selected carbon stars is a dwarf. Finally, proper-motion measurements combined with extant JHK photometry are presented for a sample of previously known halo carbon stars, suggesting that one of these stars, CLS29, is likely to be a previously unrecognized dwarf carbon star.

79 citations

Journal ArticleDOI
TL;DR: The 25 m Isaac Newton Telescope (INT) is currently being used to carry out a major multi-colour, multi-epoch wide field CCD based survey over an area of ∼100 deg 2 The survey parameters have been chosen to maximise scientific return over a wide range of scientific areas and to complement other surveys being carried out elsewhere as discussed by the authors.

78 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived further constraints in the form of quantitative star formation histories (SFHs) for 14 inner halo fields which sample diverse substructures, and found the resultant behaviours can be broadly separated into two categories.
Abstract: While wide-field surveys of M31 have revealed much substructure at large radii, understanding the nature and origin of this material is not straightforward from morphology alone. Using deep HST/ACS data, we have derived further constraints in the form of quantitative star formation histories (SFHs) for 14 inner halo fields which sample diverse substructures. In agreement with our previous analysis of colour-magnitude diagram morphologies, we find the resultant behaviours can be broadly separated into two categories. The SFHs of 'disc-like' fields indicate that most of their mass has formed since z~1, with one quarter of the mass formed in the last 5 Gyr. We find 'stream-like' fields to be on average 1.5 Gyr older, with <10 percent of their stellar mass formed within the last 5 Gyr. These fields are also characterised by an age--metallicity relation showing rapid chemical enrichment to solar metallicity by z=1, suggestive of an early-type progenitor. We confirm a significant burst of star formation 2 Gyr ago, discovered in our previous work, in all the fields studied here. The presence of these young stars in our most remote fields suggests that they have not formed in situ but have been kicked-out from through disc heating in the recent past.

78 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the mass density, Omega_M, and cosmological-constant energy density of the universe were measured using the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology project.
Abstract: We report measurements of the mass density, Omega_M, and cosmological-constant energy density, Omega_Lambda, of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these SNe, at redshifts between 0.18 and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04} (identified systematics). The data are strongly inconsistent with a Lambda = 0 flat cosmology, the simplest inflationary universe model. An open, Lambda = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(Lambda > 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calan/Tololo sample and our high-redshift sample. The conclusions are robust whether or not a width-luminosity relation is used to standardize the SN peak magnitudes.

16,838 citations

Journal ArticleDOI
TL;DR: In this article, the authors used spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62.
Abstract: We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmo- logical parameters: the Hubble constant the mass density the cosmological constant (i.e., the (H 0 ), () M ), vacuum energy density, the deceleration parameter and the dynamical age of the universe ) " ), (q 0 ), ) M \ 1) methods. We estimate the dynamical age of the universe to be 14.2 ^ 1.7 Gyr including systematic uncer- tainties in the current Cepheid distance scale. We estimate the likely e†ect of several sources of system- atic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these e†ects appear to reconcile the data with and ) " \ 0 q 0 " 0.

16,674 citations

Journal ArticleDOI
22 Dec 2000-Science
TL;DR: An approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set and efficiently computes a globally optimal solution, and is guaranteed to converge asymptotically to the true structure.
Abstract: Scientists working with large volumes of high-dimensional data, such as global climate patterns, stellar spectra, or human gene distributions, regularly confront the problem of dimensionality reduction: finding meaningful low-dimensional structures hidden in their high-dimensional observations. The human brain confronts the same problem in everyday perception, extracting from its high-dimensional sensory inputs-30,000 auditory nerve fibers or 10(6) optic nerve fibers-a manageably small number of perceptually relevant features. Here we describe an approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set. Unlike classical techniques such as principal component analysis (PCA) and multidimensional scaling (MDS), our approach is capable of discovering the nonlinear degrees of freedom that underlie complex natural observations, such as human handwriting or images of a face under different viewing conditions. In contrast to previous algorithms for nonlinear dimensionality reduction, ours efficiently computes a globally optimal solution, and, for an important class of data manifolds, is guaranteed to converge asymptotically to the true structure.

13,652 citations

Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations