scispace - formally typeset
Search or ask a question
Author

Mike Rees

Bio: Mike Rees is an academic researcher from University of Westminster. The author has contributed to research in topics: Usability & Risk assessment. The author has an hindex of 4, co-authored 6 publications receiving 5660 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Cressie et al. as discussed by the authors presented the Statistics for Spatial Data (SDS) for the first time in 1991, and used it for the purpose of statistical analysis of spatial data.
Abstract: 5. Statistics for Spatial Data. By N. Cressie. ISBN 0 471 84336 9. Wiley, Chichester, 1991. 900 pp. £71.00.

5,555 citations

Proceedings Article
01 Jan 2008
TL;DR: The authors want to show the implication of interactive ICT on patient empowerment, through an overview of some of the key aspects EHR, telecare and patient networks all this within the context of recent Health 2.0 developments.
Abstract: The authors want to show the implication of interactive ICT on patient empowerment, through an overview of some of the key aspects EHR, telecare and patient networks all this within the context of recent Health 2.0 developments. Definitions will be given of both Health 2.0 and Patient 2.0 Empowerment.

76 citations

Proceedings ArticleDOI
20 Jun 2007
TL;DR: A modelling framework for patient flow in a healthcare system using semi-open queueing network models, which introduces a total bed constraint, above which new patients will be refused admission, is presented.
Abstract: In this paper, we present a modelling framework for patient flow in a healthcare system using semi-open queueing network models, which introduces a total bed constraint, above which new patients will be refused admission. Hence this model provides a realistic representation of a real system. This approach enables us to have access to a range of established methods that deals with queueing network models. We demonstrate the usefulness of the model in the context of a geriatric department and show that hospital managers can use this model to gain better understanding of the dynamics of patient flow and to study potential long-term impacts of policy changes.

18 citations

Journal ArticleDOI
TL;DR: This work discusses how software architecture can be developed to implement the main methodologies concentrating on the distinction between monitoring individual performance and monitoring aggregated performance and highlights the importance and difficulties associated with incorporating and assessing risk factors.
Abstract: Methods of assessing and monitoring the performance of clinicians have received a lot of publicity in recent years. We review the main methodologies concentrating on the distinction between monitoring individual performance and monitoring aggregated performance. We also highlight the importance and difficulties associated with incorporating and assessing risk factors into the process. We discuss how software architecture can be developed to implement these methodologies. We illustrate this development by a case study involving the creation of a software tool to produce funnel plots to analyse surgeon performance. We discuss how such tools are currently evaluated and propose that in future assessments of usability would benefit from an experimental study.

10 citations

Proceedings ArticleDOI
22 Jun 2006
TL;DR: It is argued that in the UK, although the use of the Parsonnet system is inappropriate and that the EuroSCORE system is a clear improvement, there are advantages in adopting a system based on a Bayesian model for risk assessment.
Abstract: We present the need for risk stratification in the monitoring of cardiac surgical practice and review the frequentist and Bayesian approaches to the problem. Developments in the available databases are described. Enhancements to the Parsonnet and EuroSCORE systems are reviewed. We argue that in the UK, although the use of the Parsonnet system is inappropriate and that the EuroSCORE system is a clear improvement, there are advantages in adopting a system based on a Bayesian model for risk assessment.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper introduces the reader to a response surface methodology that is especially good at modeling the nonlinear, multimodal functions that often occur in engineering and shows how these approximating functions can be used to construct an efficient global optimization algorithm with a credible stopping rule.
Abstract: In many engineering optimization problems, the number of function evaluations is severely limited by time or cost. These problems pose a special challenge to the field of global optimization, since existing methods often require more function evaluations than can be comfortably afforded. One way to address this challenge is to fit response surfaces to data collected by evaluating the objective and constraint functions at a few points. These surfaces can then be used for visualization, tradeoff analysis, and optimization. In this paper, we introduce the reader to a response surface methodology that is especially good at modeling the nonlinear, multimodal functions that often occur in engineering. We then show how these approximating functions can be used to construct an efficient global optimization algorithm with a credible stopping rule. The key to using response surfaces for global optimization lies in balancing the need to exploit the approximating surface (by sampling where it is minimized) with the need to improve the approximation (by sampling where prediction error may be high). Striking this balance requires solving certain auxiliary problems which have previously been considered intractable, but we show how these computational obstacles can be overcome.

6,914 citations

Book
02 Sep 2011
TL;DR: This chapter discusses the role of asymptotics for BLPs, and applications of equivalence and orthogonality of Gaussian measures to linear prediction, and the importance of Observations not part of a sequence.
Abstract: 1 Linear Prediction.- 1.1 Introduction.- 1.2 Best linear prediction.- Exercises.- 1.3 Hilbert spaces and prediction.- Exercises.- 1.4 An example of a poor BLP.- Exercises.- 1.5 Best linear unbiased prediction.- Exercises.- 1.6 Some recurring themes.- The Matern model.- BLPs and BLUPs.- Inference for differentiable random fields.- Nested models are not tenable.- 1.7 Summary of practical suggestions.- 2 Properties of Random Fields.- 2.1 Preliminaries.- Stationarity.- Isotropy.- Exercise.- 2.2 The turning bands method.- Exercise.- 2.3 Elementary properties of autocovariance functions.- Exercise.- 2.4 Mean square continuity and differentiability.- Exercises.- 2.5 Spectral methods.- Spectral representation of a random field.- Bochner's Theorem.- Exercises.- 2.6 Two corresponding Hilbert spaces.- An application to mean square differentiability.- Exercises.- 2.7 Examples of spectral densities on 112.- Rational spectral densities.- Principal irregular term.- Gaussian model.- Triangular autocovariance functions.- Matern class.- Exercises.- 2.8 Abelian and Tauberian theorems.- Exercises.- 2.9 Random fields with nonintegrable spectral densities.- Intrinsic random functions.- Semivariograms.- Generalized random fields.- Exercises.- 2.10 Isotropic autocovariance functions.- Characterization.- Lower bound on isotropic autocorrelation functions.- Inversion formula.- Smoothness properties.- Matern class.- Spherical model.- Exercises.- 2.11 Tensor product autocovariances.- Exercises.- 3 Asymptotic Properties of Linear Predictors.- 3.1 Introduction.- 3.2 Finite sample results.- Exercise.- 3.3 The role of asymptotics.- 3.4 Behavior of prediction errors in the frequency domain.- Some examples.- Relationship to filtering theory.- Exercises.- 3.5 Prediction with the wrong spectral density.- Examples of interpolation.- An example with a triangular autocovariance function.- More criticism of Gaussian autocovariance functions.- Examples of extrapolation.- Pseudo-BLPs with spectral densities misspecified at high frequencies.- Exercises.- 3.6 Theoretical comparison of extrapolation and ointerpolation.- An interpolation problem.- An extrapolation problem.- Asymptotics for BLPs.- Inefficiency of pseudo-BLPs with misspecified high frequency behavior.- Presumed mses for pseudo-BLPs with misspecified high frequency behavior.- Pseudo-BLPs with correctly specified high frequency behavior.- Exercises.- 3.7 Measurement errors.- Some asymptotic theory.- Exercises.- 3.8 Observations on an infinite lattice.- Characterizing the BLP.- Bound on fraction of mse of BLP attributable to a set of frequencies.- Asymptotic optimality of pseudo-BLPs.- Rates of convergence to optimality.- Pseudo-BLPs with a misspecified mean function.- Exercises.- 4 Equivalence of Gaussian Measures and Prediction.- 4.1 Introduction.- 4.2 Equivalence and orthogonality of Gaussian measures.- Conditions for orthogonality.- Gaussian measures are equivalent or orthogonal.- Determining equivalence or orthogonality for periodic random fields.- Determining equivalence or orthogonality for nonperiodic random fields.- Measurement errors and equivalence and orthogonality.- Proof of Theorem 1.- Exercises.- 4.3 Applications of equivalence of Gaussian measures to linear prediction.- Asymptotically optimal pseudo-BLPs.- Observations not part of a sequence.- A theorem of Blackwell and Dubins.- Weaker conditions for asymptotic optimality of pseudo-BLPs.- Rates of convergence to asymptotic optimality.- Asymptotic optimality of BLUPs.- Exercises.- 4.4 Jeffreys's law.- A Bayesian version.- Exercises.- 5 Integration of Random Fields.- 5.1 Introduction.- 5.2 Asymptotic properties of simple average.- Results for sufficiently smooth random fields.- Results for sufficiently rough random fields.- Exercises.- 5.3 Observations on an infinite lattice.- Asymptotic mse of BLP.- Asymptotic optimality of simple average.- Exercises.- 5.4 Improving on the sample mean.- Approximating $$\int_0^1 {\exp } (ivt)dt$$.- Approximating $$\int_{{{[0,1]}^d}} {\exp (i{\omega ^T}x)} dx$$ in more than one dimension.- Asymptotic properties of modified predictors.- Are centered systematic samples good designs?.- Exercises.- 5.5 Numerical results.- Exercises.- 6 Predicting With Estimated Parameters.- 6.1 Introduction.- 6.2 Microergodicity and equivalence and orthogonality of Gaussian measures.- Observations with measurement error.- Exercises.- 6.3 Is statistical inference for differentiable processes possible?.- An example where it is possible.- Exercises.- 6.4 Likelihood Methods.- Restricted maximum likelihood estimation.- Gaussian assumption.- Computational issues.- Some asymptotic theory.- Exercises.- 6.5 Matern model.- Exercise.- 6.6 A numerical study of the Fisher information matrix under the Matern model.- No measurement error and?unknown.- No measurement error and?known.- Observations with measurement error.- Conclusions.- Exercises.- 6.7 Maximum likelihood estimation for a periodic version of the Matern model.- Discrete Fourier transforms.- Periodic case.- Asymptotic results.- Exercises.- 6.8 Predicting with estimated parameters.- Jeffreys's law revisited.- Numerical results.- Some issues regarding asymptotic optimality.- Exercises.- 6.9 An instructive example of plug-in prediction.- Behavior of plug-in predictions.- Cross-validation.- Application of Matern model.- Conclusions.- Exercises.- 6.10 Bayesian approach.- Application to simulated data.- Exercises.- A Multivariate Normal Distributions.- B Symbols.- References.

2,998 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe six different statistical approaches to infer correlates of species distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations.
Abstract: Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model based on such data, one of the key assumptions of standard statistical analyses, that residuals are independent and identically distributed (i.i.d), is violated. The violation of the assumption of i.i.d. residuals may bias parameter estimates and can increase type I error rates (falsely rejecting the null hypothesis of no effect). While this is increasingly recognised by researchers analysing species distribution data, there is, to our knowledge, no comprehensive overview of the many available spatial statistical methods to take spatial autocorrelation into account in tests of statistical significance. Here, we describe six different statistical approaches to infer correlates of species’ distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations. A comprehensive comparison of the relative merits of these methods is beyond the scope of this paper. To demonstrate each method’s implementation, however, we undertook preliminary tests based on simulated data. These preliminary tests verified that most of the spatial modeling techniques we examined showed good type I error control and precise parameter estimates, at least when confronted with simplistic simulated data containing

2,820 citations

Journal ArticleDOI
01 Nov 2003-Geoderma
TL;DR: The generic framework, which the authors call the scorpanSSPFe (soil spatial prediction function with spatially autocorrelated errors) method, is particularly relevant for those places where soil resource information is limited.

2,527 citations

Book
18 Oct 2012
TL;DR: This rigorous introduction to stochastic geometry will enable you to obtain powerful, general estimates and bounds of wireless network performance and make good design choices for future wireless architectures and protocols that efficiently manage interference effects.
Abstract: Covering point process theory, random geometric graphs and coverage processes, this rigorous introduction to stochastic geometry will enable you to obtain powerful, general estimates and bounds of wireless network performance and make good design choices for future wireless architectures and protocols that efficiently manage interference effects. Practical engineering applications are integrated with mathematical theory, with an understanding of probability the only prerequisite. At the same time, stochastic geometry is connected to percolation theory and the theory of random geometric graphs and accompanied by a brief introduction to the R statistical computing language. Combining theory and hands-on analytical techniques with practical examples and exercises, this is a comprehensive guide to the spatial stochastic models essential for modelling and analysis of wireless network performance.

2,327 citations