scispace - formally typeset
Search or ask a question
Author

Mike West

Other affiliations: Texas Tech University, University of Nottingham, Pfizer  ...read more
Bio: Mike West is an academic researcher from Duke University. The author has contributed to research in topics: Bayesian probability & Bayesian inference. The author has an hindex of 76, co-authored 249 publications receiving 28135 citations. Previous affiliations of Mike West include Texas Tech University & University of Nottingham.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes and show convergence results for a general class of normal mixture models.
Abstract: We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation and are exemplified by special cases where data are modeled as a sample from mixtures of normal distributions. Efficient simulation methods are used to approximate various prior, posterior, and predictive distributions. This allows for direct inference on a variety of practical issues, including problems of local versus global smoothing, uncertainty about density estimates, assessment of modality, and the inference on the numbers of components. Also, convergence results are established for a general class of normal mixture models.

2,473 citations

Book
01 Nov 1989
TL;DR: In this article, the authors propose a model called the Dynamic Regression Model (DRM) which is an extension of the First-Order Polynomial Model (FOPM) and the Dynamic Linear Model (DLM).
Abstract: to the DLM: The First-Order Polynomial Model.- to the DLM: The Dynamic Regression Model.- The Dynamic Linear Model.- Univariate Time Series DLM Theory.- Model Specification and Design.- Polynomial Trend Models.- Seasonal Models.- Regression, Autoregression, and Related Models.- Illustrations and Extensions of Standard DLMs.- Intervention and Monitoring.- Multi-Process Models.- Non-Linear Dynamic Models: Analytic and Numerical Approximations.- Exponential Family Dynamic Models.- Simulation-Based Methods in Dynamic Models.- Multivariate Modelling and Forecasting.- Distribution Theory and Linear Algebra.

2,129 citations

Journal ArticleDOI
19 Jan 2006-Nature
TL;DR: It is shown that gene expression signatures can be identified that reflect the activation status of several oncogenic pathways and linked with sensitivity to therapeutics that target components of the pathway provides an opportunity to make use of these oncogens pathway signatures to guide the use of targeted therapeutics.
Abstract: The development of an oncogenic state is a complex process involving the accumulation of multiple independent mutations that lead to deregulation of cell signalling pathways central to the control of cell growth and cell fate. The ability to define cancer subtypes, recurrence of disease and response to specific therapies using DNA microarray-based gene expression signatures has been demonstrated in multiple studies. Various studies have also demonstrated the potential for using gene expression profiles for the analysis of oncogenic pathways. Here we show that gene expression signatures can be identified that reflect the activation status of several oncogenic pathways. When evaluated in several large collections of human cancers, these gene expression signatures identify patterns of pathway deregulation in tumours and clinically relevant associations with disease outcomes. Combining signature-based predictions across several pathways identifies coordinated patterns of pathway deregulation that distinguish between specific cancers and tumour subtypes. Clustering tumours based on pathway signatures further defines prognosis in respective patient subsets, demonstrating that patterns of oncogenic pathway deregulation underlie the development of the oncogenic phenotype and reflect the biology and outcome of specific cancers. Predictions of pathway deregulation in cancer cell lines are also shown to predict the sensitivity to therapeutic agents that target components of the pathway. Linking pathway deregulation with sensitivity to therapeutics that target components of the pathway provides an opportunity to make use of these oncogenic pathway signatures to guide the use of targeted therapeutics.

1,987 citations

Journal ArticleDOI
TL;DR: Bayesian regression models that provide predictive capability based on gene expression data derived from DNA microarray analysis of a series of primary breast cancer samples are developed and the utility and validity of such models in predicting the status of tumors in crossvalidation determinations are assessed.
Abstract: Prognostic and predictive factors are indispensable tools in the treatment of patients with neoplastic disease. For the most part, such factors rely on a few specific cell surface, histological, or gross pathologic features. Gene expression assays have the potential to supplement what were previously a few distinct features with many thousands of features. We have developed Bayesian regression models that provide predictive capability based on gene expression data derived from DNA microarray analysis of a series of primary breast cancer samples. These patterns have the capacity to discriminate breast tumors on the basis of estrogen receptor status and also on the categorized lymph node status. Importantly, we assess the utility and validity of such models in predicting the status of tumors in crossvalidation determinations. The practical value of such approaches relies on the ability not only to assess relative probabilities of clinical outcomes for future samples but also to provide an honest assessment of the uncertainties associated with such predictive classifications on the basis of the selection of gene subsets for each validation analysis. This latter point is of critical importance in the ability to apply these methodologies to clinical assessment of tumor phenotype.

1,408 citations

Book ChapterDOI
01 Jan 2001
TL;DR: Much of the recent and current interest in simulation-based methods of sequential Bayesian analysis of dynamic models has been focused on improved methods of filtering for time-varying state vectors, as represented throughout this volume.
Abstract: Much of the recent and current interest in simulation-based methods of sequential Bayesian analysis of dynamic models has been focused on improved methods of filtering for time-varying state vectors. We now have quite effective algorithms for time-varying states, as represented throughout this volume. Variants of the auxiliary particle filtering algorithm (Pitt and Shephard 1999b), in particular, are of proven applied efficacy in quite elaborate models. However, the need for more general algorithms that deal simultaneously with both fixed model parameters and state variables is especially pressing. We simply do not have access to efficient and effective methods of treating this problem, especially in models with realistically large numbers of fixed model parameters. It is a very challenging problem.

974 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation, and an algorithm called LARS‐EN is proposed for computing elastic net regularization paths efficiently, much like algorithm LARS does for the lamba.
Abstract: Summary. We propose the elastic net, a new regularization and variable selection method. Real world data and a simulation study show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping effect, where strongly correlated predictors tend to be in or out of the model together.The elastic net is particularly useful when the number of predictors (p) is much bigger than the number of observations (n). By contrast, the lasso is not a very satisfactory variable selection method in the

16,538 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the problem of comparing complex hierarchical models in which the number of parameters is not clearly defined and derive a measure pD for the effective number in a model as the difference between the posterior mean of the deviances and the deviance at the posterior means of the parameters of interest, which is related to other information criteria and has an approximate decision theoretic justification.
Abstract: Summary. We consider the problem of comparing complex hierarchical models in which the number of parameters is not clearly defined. Using an information theoretic argument we derive a measure pD for the effective number of parameters in a model as the difference between the posterior mean of the deviance and the deviance at the posterior means of the parameters of interest. In general pD approximately corresponds to the trace of the product of Fisher's information and the posterior covariance, which in normal models is the trace of the ‘hat’ matrix projecting observations onto fitted values. Its properties in exponential families are explored. The posterior mean deviance is suggested as a Bayesian measure of fit or adequacy, and the contributions of individual observations to the fit and complexity can give rise to a diagnostic plot of deviance residuals against leverages. Adding pD to the posterior mean deviance gives a deviance information criterion for comparing models, which is related to other information criteria and has an approximate decision theoretic justification. The procedure is illustrated in some examples, and comparisons are drawn with alternative Bayesian and classical proposals. Throughout it is emphasized that the quantities required are trivial to compute in a Markov chain Monte Carlo analysis.

11,691 citations

Journal ArticleDOI
TL;DR: Both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters are reviewed.
Abstract: Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and non-Gaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it arrives, both from the point of view of storage costs as well as for rapid adaptation to changing signal characteristics. In this paper, we review both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on point mass (or "particle") representations of probability densities, which can be applied to any state-space model and which generalize the traditional Kalman filtering methods. Several variants of the particle filter such as SIR, ASIR, and RPF are introduced within a generic framework of the sequential importance sampling (SIS) algorithm. These are discussed and compared with the standard EKF through an illustrative example.

11,409 citations

Book
23 Nov 2005
TL;DR: The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics, and deals with the supervised learning problem for both regression and classification.
Abstract: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

11,357 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations