scispace - formally typeset
Search or ask a question
Author

Mikhail Churnosov

Bio: Mikhail Churnosov is an academic researcher from Belgorod State University. The author has contributed to research in topics: Single-nucleotide polymorphism & Genotype. The author has an hindex of 14, co-authored 80 publications receiving 1834 citations.


Papers
More filters
Journal ArticleDOI
Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson2, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick1, Swapan Mallick2, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber6, Joshua G. Schraiber7, Sergi Castellano4, Mark Lipson8, Bonnie Berger2, Bonnie Berger8, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt1, Susanne Nordenfelt2, Heng Li1, Heng Li2, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland1, Nadin Rohland2, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan14, Ruslan Ruizbakiev49, Hovhannes Sahakyan50, Hovhannes Sahakyan38, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua1, Pierre Zalloua57, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas40, Andres Ruiz-Linares40, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems62, Richard Villems43, Richard Villems38, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich2, David Reich1, David Reich64, Johannes Krause3, Johannes Krause4 
Harvard University1, Broad Institute2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, Sultan Qaboos University13, University of Edinburgh14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, University College London40, Amgen41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Tarapacá47, University of Chile48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
18 Sep 2014-Nature
TL;DR: It is shown that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians; and early European farmers, who were mainly of Near Eastern origin but also harboured west Europeanhunter-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

1,077 citations

Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson2, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick2, Swapan Mallick1, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber6, Joshua G. Schraiber7, Sergi Castellano4, Mark Lipson8, Bonnie Berger8, Bonnie Berger2, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt1, Susanne Nordenfelt2, Heng Li2, Heng Li1, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland1, Nadin Rohland2, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan13, Ruslan Ruizbakiev49, Hovhannes Sahakyan50, Hovhannes Sahakyan38, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua1, Pierre Zalloua57, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas41, Andres Ruiz-Linares41, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems38, Richard Villems62, Richard Villems43, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich1, David Reich2, David Reich64, Johannes Krause3, Johannes Krause4 
Harvard University1, Broad Institute2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, University of Edinburgh13, Sultan Qaboos University14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, Amgen40, University College London41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Chile47, University of Tarapacá48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
01 Sep 2014
TL;DR: The authors showed that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunters-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

442 citations

Posted ContentDOI
Iosif Lazaridis1, Nick Patterson2, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick1, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber7, Sergi Castellano4, Mark Lipson8, Bonnie Berger8, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt1, Heng Li2, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland1, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet13, Joachim Wahl, George Ayodo, Hamza A. Babiker14, Graciela Bailliet15, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes16, Gabriel Bedoya17, Haim Ben-Ami18, Judit Bene19, Fouad Berrada20, Claudio M. Bravi15, Francesca Brisighelli21, George B.J. Busby22, Francesco Calì, Mikhail Churnosov23, David E. C. Cole24, Daniel Corach25, Larissa Damba26, George van Driem27, Stanislav Dryomov26, Jean-Michel Dugoujon28, Sardana A. Fedorova29, Irene Gallego Romero30, Marina Gubina31, Michael F. Hammer32, Brenna M. Henn33, Tor Hervig34, Ugur Hodoglugil35, Aashish R. Jha30, Sena Karachanak-Yankova36, Rita Khusainova31, Elza Khusnutdinova31, Rick A. Kittles37, Toomas Kivisild38, William Klitz7, Vaidutis Kučinskas39, Alena Kushniarevich40, Leila Laredj41, Sergey Litvinov31, Theologos Loukidis42, Robert W. Mahley43, Béla Melegh19, Ene Metspalu44, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi45, Desislava Nesheva36, Thomas B. Nyambo46, Ludmila P. Osipova31, Jüri Parik44, Fedor Platonov29, Olga L. Posukh31, Valentino Romano47, Francisco Rothhammer48, Igor Rudan14, Ruslan Ruizbakiev49, Hovhannes Sahakyan40, Antti Sajantila50, Antonio Salas51, Elena B. Starikovskaya31, Ayele Tarekegn, Draga Toncheva36, Shahlo Turdikulova49, Ingrida Uktveryte39, Olga Utevska52, René Vasquez53, Mercedes Villena53, Mikhail Voevoda31, Cheryl A. Winkler54, Levon Yepiskoposyan55, Pierre Zalloua56, Tatijana Zemunik57, Alan Cooper10, Cristian Capelli22, Mark G. Thomas58, Andres Ruiz-Linares58, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj60, Richard Villems40, David Comas61, Rem I. Sukernik31, Mait Metspalu40, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich1, Johannes Krause3 
Harvard University1, Broad Institute2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, American Museum of Natural History13, University of Edinburgh14, National Scientific and Technical Research Council15, University of Costa Rica16, University of Antioquia17, Rambam Health Care Campus18, University of Pécs19, Al Akhawayn University20, Catholic University of the Sacred Heart21, University of Oxford22, Belgorod State University23, University of Toronto24, University of Buenos Aires25, Russian Academy26, University of Bern27, Paul Sabatier University28, North-Eastern Federal University29, University of Chicago30, Russian Academy of Sciences31, University of Arizona32, Stony Brook University33, University of Bergen34, Illumina35, Sofia Medical University36, University of Illinois at Chicago37, University of Cambridge38, Vilnius University39, Estonian Biocentre40, University of Strasbourg41, Amgen42, Gladstone Institutes43, University of Tartu44, University of Oulu45, Muhimbili University of Health and Allied Sciences46, University of Palermo47, University of Tarapacá48, Academy of Sciences of Uzbekistan49, University of Helsinki50, University of Santiago de Compostela51, University of Kharkiv52, Higher University of San Andrés53, Leidos54, Armenian National Academy of Sciences55, Lebanese American University56, University of Split57, University College London58, University of Pennsylvania59, Centre for Cellular and Molecular Biology60, Pompeu Fabra University61
02 Apr 2014-bioRxiv
TL;DR: It is shown that the great majority of present-day Europeans derive from at least three highly differentiated populations: West European Hunter-Gatherers (WHG), who contributed ancestry to all Europeans but not to Near Easterners; Ancient North Eurasians (ANE); and Early European Farmers (EEF), who were mainly of Near Eastern origin but also harbored WHG-related ancestry.
Abstract: We sequenced genomes from a ~7,000 year old early farmer from Stuttgart in Germany, an ~8,000 year old hunter-gatherer from Luxembourg, and seven ~8,000 year old hunter-gatherers from southern Sweden. We analyzed these data together with other ancient genomes and 2,345 contemporary humans to show that the great majority of present-day Europeans derive from at least three highly differentiated populations: West European Hunter-Gatherers (WHG), who contributed ancestry to all Europeans but not to Near Easterners; Ancient North Eurasians (ANE), who were most closely related to Upper Paleolithic Siberians and contributed to both Europeans and Near Easterners; and Early European Farmers (EEF), who were mainly of Near Eastern origin but also harbored WHG-related ancestry. We model these populations' deep relationships and show that EEF had ~44% ancestry from a "Basal Eurasian" lineage that split prior to the diversification of all other non-African lineages.

134 citations

Journal ArticleDOI
TL;DR: Genome-wide data for 763 individuals from inner Eurasia reveal 3 admixture clines in present-day populations that mirror geography, illuminating the historic spread and mixture of peoples across the Eurasian steppe, taiga and tundra.
Abstract: The indigenous populations of inner Eurasia—a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra—harbour tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine and Uzbekistan. We furthermore report additional damage-reduced genome-wide data of two previously published individuals from the Eneolithic Botai culture in Kazakhstan (~5,400 bp). We find that present-day inner Eurasian populations are structured into three distinct admixture clines stretching between various western and eastern Eurasian ancestries, mirroring geography. The Botai and more recent ancient genomes from Siberia show a decrease in contributions from so-called ‘ancient North Eurasian’ ancestry over time, which is detectable only in the northern-most ‘forest-tundra’ cline. The intermediate ‘steppe-forest’ cline descends from the Late Bronze Age steppe ancestries, while the ‘southern steppe’ cline further to the south shows a strong West/South Asian influence. Ancient genomes suggest a northward spread of the southern steppe cline in Central Asia during the first millennium bc. Finally, the genetic structure of Caucasus populations highlights a role of the Caucasus Mountains as a barrier to gene flow and suggests a post-Neolithic gene flow into North Caucasus populations from the steppe. Genome-wide data for 763 individuals from inner Eurasia reveal 3 admixture clines in present-day populations that mirror geography, illuminating the historic spread and mixture of peoples across the Eurasian steppe, taiga and tundra.

110 citations

Journal ArticleDOI
TL;DR: The deletion variant of the ACE gene is associated with high blood pressure level at the end of pregnancy, particularly in pregnant women in the hypertensive group.
Abstract: Introduction: Malfunctioning of the cardiovascular system during pregnancy may be responsible for adverse effects on the 'mother-fetus' system. The cardiovascular system of a pregnant woman develops adaptation to the increased load. Angiotensin-converting enzyme (ACE) is known to play an important role in the adaptation. The present study was designed to investigate whether the insertion-deletion (I/D) polymorphism of the ACE gene is associated with the level of arterial blood pressure in women before and during pregnancy. Materials and methods: The level of blood pressure was measured in 591 Russian women (Central Russia) before and during (37-40 weeks term) pregnancy. The women were divided into three groups which were hypertensive, hypo- tensive, and normotensive according to blood pressure level. Genotyping of the ACE I/D polymorphism was performed using polymerase chain reaction (PCR) and amplified fragment length polymorphism assay. Results: Women with genotype DD showed the highest blood pressure level both during and at the end of preg- nancy (p<0.05). The highest frequencies of allele D and genotype DD were found in pregnant women in the hyper- tensive group. Conclusions: The deletion variant of the ACE gene is associated with high blood pressure level at the end of pregnancy.

45 citations


Cited by
More filters
01 Jun 2005

3,154 citations

01 Jan 2010
TL;DR: In this paper, the authors show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait, revealing patterns with important implications for genetic studies of common human diseases and traits.
Abstract: Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

1,751 citations

Journal ArticleDOI
TL;DR: Some of the key events in the peopling of the world in the light of the findings of work on ancient DNA are reviewed.
Abstract: Ancient DNA research is revealing a human history far more complex than that inferred from parsimonious models based on modern DNA. Here, we review some of the key events in the peopling of the world in the light of the findings of work on ancient DNA.

1,365 citations

Journal ArticleDOI
11 Jun 2015-Nature
TL;DR: In this paper, the authors generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms.
Abstract: We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.

1,332 citations