scispace - formally typeset
Search or ask a question
Author

Mikhail Naumovich Kogan

Bio: Mikhail Naumovich Kogan is an academic researcher. The author has contributed to research in topics: Jet (fluid) & Shock tube. The author has an hindex of 1, co-authored 1 publications receiving 2732 citations.

Papers
More filters
Book
01 Jan 1969
TL;DR: In this paper, the authors present a simulation of a free jet expansion of a high-energy scattering of molecular beams in the presence of high-temperature Viscosity cross sections.
Abstract: Collisional Processes.- Analytical Formulae for Cross Sections and Rate Constants of Elementary Processes in Gases.- Relaxation of Velocity Distribution of Electrons Cooled (Heated) By Rotational Excitation (De-Excitation) Of N2.- Effects of the Initial Molecular States in a High-Energy Scattering of Molecular Beams.- Differential Cross Sections for Ion-Pair Formation with Selection of the Exit Channel.- Low-temperature Viscosity Cross Sections Measured in a Supersonic Argon Beam II.- Excited Oxygen Iodine Kinetic Studies.- Determination of Antisymmetric Mode Energy of CO2 Injected into a Supersonic Nitrogen Flow.- Molecular Beams.- Where are we going with molecular beams?.- Cesium Vapor Jettarget Produced With a Supersonic Nozzle.- Basic Features of the Generation and Diagnostics of Atomic Hydrogen Beams in the Ground and Metastable 22S1/2-States to Determine the Fundamental Physical Constants.- Optical Pumping Of Metastable Neon Atoms in A Weak Magnetic Field.- CO2-Laser Excitation of a Molecular Beam Monitored By Spontaneous Raman Effect.- Time-of-Flight and Electron Beam Fluorescence Diagnostics: Optimal Experimental Designs.- Molecular Beam Time-of-Flight Measurements in A Nearly Freejet Expansion of High Temperature Gas Produced By a Shock Tube.- Electron Beam Diagnostics.- Electron-Beam Diagnostics of High Temperature Rarefied Gas Flows.- Excitation Models Used in the Electron Beam Fluorescence Technique.- Electron - Beam Diagnostics in Nitrogen Multiquantum Rotational Transitions.- Free Jets, Nonequilibrium Expansions.- Free Jet as an Object of Nonequilibrium Processes Investigation.- State Dependent Angular Distributions of Na2 Molecules in a Na/Na2 Free Jet Expansion.- Molecular Beam Time-of-Flight Measurements and Moment Method Calculations of Translational Relaxation in Highly Heated Free Jets of Monatomic Gas Mixtures.- Rovibrational State Population Distributions of CO (v ? 4, J ? 10) In Highly Heated Supersonic Free Jets of CO-N2 Mixtures.- Free Jet Expansion with A Strong Condensation Effect.- Measured Densities in UF6 Free Jets.- Rotational Relaxation of NO in Seeded, Pulsed Nozzle Beams.- The Free-Jet Expansion from a Capillary Source.- Rotational Relaxation in High Temperature Jets of Nitrogen.- Translational Nonequilibrium in a Free Jet Expansion of a Binary Gas Mixture.- Laser Induced Fluorescence Study of Free Jet Expansions.- Jet-Surface Interactions.- Experimental Study of Plume Impingement and Heating Effect on Ariane's Payload.- The Interaction of a Jet Exhausting from a Body with a Supersonic Free Flow of a Rarefied Gas.- Modelling Control Thruster Plume Flow and Impingement.- Impingement of a Supersonic, Underexpanded Rarefied Jet upon a Flat Plate.- Some Peculiarities of Power and Heat Interaction of a Low Density Highly Underexpanded Jet with a Flat Plate.- Condensation in Flows.- Nonequilibrium Condensation in Free Jets.- Condensation and Vapour-Liquid Interaction in a Reflected Shock Region.- Homogeneous and Heterogeneous Condensation of Nitrogen in Transonic Flow.- Investigation of Nonequilibrium Homogeneous Gas Condensation.- The Peculiarities of Condensation Process in Conical Nozzle and in Free Jet Behind it.- Investigation of Nonequilibrium Argon Condensation In Supersonic Jet By Mass-Spectrometry, Electron Diffraction and VUV Emission Spectroscopy.- Clusters and Nucleation Kinetics.- The Microscopic Theory of Clustering and Nucleation.- Kinetics of Cluster Formation and Growth in the Process of Isothermal Condensation.- Relaxation Processes in a Molecular Dynamic Model of Cluster from the Lennard-Jones Particles.- Quantum-Chemical Study Of Processes With Cluster Isomerism.- The Homogeneous Nucleation at the Continuously Changing Temperature and Vapour Concentration.- Molecular Clusters as Heterogeneous Condensation Nuclei.- Experiments with Clusters.- The Photochemistry of Small van der Waals Molecules as Studied by Laser Spectroscopy in Supersonic Free Jets.- Diagnostics of Clusters in Molecular Beams.- Experimental Studies of Water-Aerosol Explosive Vaporization.- Laser Probing of Cluster Formation and Dissociation in Molecular Beams.- Free Molecule Drag on Helium Clusters.- Vibrational Relaxation Kinetics in a Two-Phase Gas-Cluster System.- Gas-Particle Flows.- Long-Range Attraction in the Collisions of Free-Molecular and Transition Regime Aerosol Particles.- Nonequilibrium Statistical Theory of Dispersed Systems.- The Mechanism of Strong Electric Field Effect on the Dispersed Media in the Rarefied Gas.- Generation of High-Speed Aerosol Beams By Laval Nozzles.- Kinetic Model of a Gas Suspension.- Gas Mixtures.- Kinetic Phenomena in the Rarefied Gas Mixtures Flowing Through Channels.- On the Discrete Boltzmann Equation for Binary Gas Mixtures.- Peculiarities and Applicability Conditions of Macroscopic Description of Disparate Molecular Masses Mixture Motion.- Numerical Solution of the Boltzmann Kinetic Equation for the Binary Gas Mixture.- Species Isotope Separation.- Gas or Isotope Separation by Injection into Light Gas Flow.- Molecular Diffusion Through a Fine-Pored Filter Versus Resonante IR-Radiation Intensity.- On Limiting Situations of Gas Dynamic Separation.- A Study of Reverse Leaks.- Investigation of Nonequilibrium Effects in Separation Nozzles by Monte-Carlo Simulation.- Separation of Binary Gas Mixtures at their Effusion through a Capillary and a Nuclear Filler into Vacuum.- Ionized Gases.- Effects of Nonideality in Quantum Kinetic Theory.- Molecular Mass and Heat Transfer of Chemical Equilibrium Multicomponent Partially Ionized Gases in Electromagnetic Field.- Spectroscopic Study of a Plasma Flow along the Stagnation Streamline of a Blunt Body.- On Model Kinetic Operators and Corresponding Langevin Sources for a Non-Equilibrium Plasma.- Related Fields.- Rarefied Gas Dynamics as Related to Controlled Thermonuclear Fusion.- Vacuum Ejectors with Appreciably Uneven Flows in Channels at Low Reynolds Numbers.- Simulation of the Process of the Cosmic Body Formation.

2,747 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Electrospray (E S ) ionization has recently shown itself capable of producing intact ions, with multiple charges, from remarkably large, complex, and fragile parent species as mentioned in this paper, which is the state-of-the-art in mass spectrometric analysis.
Abstract: Chemistry has its origins as a quantitative science in the careful weighing of products and reactants by Lavoisier and his followers beginning some 200 years ago. Ever since then, the constantly evolving gravimetric balance has been a faithful servant of the laboratory chemist and has played a major role in developing the analytical methods that are the foundation of contemporary chemical science. Perhaps the ultimate stage in the evolution of that balance is represented by the modern mass spectrometer. It is able to determine with high precision the masses of individual atoms and molecules by transforming them into ions and measuring the response of their trajectories in vacuo to various combinations of electric and magnetic fields. Clearly, the sine qua non of such mass determination is the transformation of analyte atoms and molecules from their initial state in a sample to ions in vacuo ready for ”weighing.” Over the years, ingenious investigators have produced a variety of methods for achieving this transformation. One of them, electrospray ( E S ) ionization, has recently shown itself capable of producing intact ions, with multiple charges, from remarkably large, complex, and fragile parent species. Our assignment here is to review what has thus far been learned about this still uncommon technique and what it seems able to offer practitioners of mass spectrometric analysis. Our approach will be to set forth the present state of the ES ionization art in terms of a sort of menu of its procedures, processes, performance, and promise. Until very recently we have been almost the only group that has worked with ES ionization since the pioneering efforts of Malcolm Dole (1) some 20 years ago. Consequently, this review is more tutorial than most. Moreover, it may seem like a cook book that is overly preoccupied with the authors’ own culinary adventures. The reasoil is that many of the dishes to be described were first tried out in our own kitchen. Therefore, we earnestly urge the reader to remember what every gourmet knows: the piquancy of any dish on a bill of fare is due much less to its ingredients than to the skill of the chef whc. prepares it.

1,487 citations

Journal ArticleDOI
TL;DR: PLUTO as mentioned in this paper is a multiphysics, multialgorithm modular environment particularly oriented toward the treatment of astrophysical flows in presence of discontinuities, and it exploits a general framework for integrating a system of conservation laws, built on modern Godunov-type shockcapturing schemes.
Abstract: We present a new numerical code, PLUTO, for the solution of hypersonic flows in 1, 2, and 3 spatial dimensions and different systems of coordinates. The code provides a multiphysics, multialgorithm modular environment particularly oriented toward the treatment of astrophysical flows in presence of discontinuities. Different hydrodynamic modules and algorithms may be independently selected to properly describe Newtonian, relativistic, MHD, or relativistic MHD fluids. The modular structure exploits a general framework for integrating a system of conservation laws, built on modern Godunov-type shock-capturing schemes. Although a plethora of numerical methods has been successfully developed over the past two decades, the vast majority shares a common discretization recipe, involving three general steps: a piecewise polynomial reconstruction followed by the solution of Riemann problems at zone interfaces and a final evolution stage. We have checked and validated the code against several benchmarks available in literature. Test problems in 1, 2, and 3 dimensions are discussed.

1,376 citations

Journal ArticleDOI
TL;DR: In this paper, a laser-Doppler velocimeter (LDV) study of velocity profiles in the laminar boundary layer adjacent to a heated flat plate revealed that the seed particles used for the LDV measurements were driven away from the plate surface by thermophoretic forces, causing a particle free region within the boundary layer of approximately one half the boundary-layer thickness.
Abstract: A laser-Doppler velocimeter (LDV) study of velocity profiles in the laminar boundary layer adjacent to a heated flat plate revealed that the seed particles used for the LDV measurements were driven away from the plate surface by thermophoretic forces, causing a particle-free region within the boundary layer of approximately one half the boundary-layer thickness. Measurements of the thickness of this region were compared with particle trajectories calculated according to several theories for the thermophoretic force. It was found that the theory of Brock, with an improved value for the thermal slip coefficient, gave the best agreement with experiment for low Knudsen numbers, λ/R = O(10−1), where λ is the mean free path and R the particle radius.Data obtained by other experimenters over a wider range of Knudsen numbers are compared, and a fitting formula for the thermophoretic force useful over the entire range 0 [les ] λ/R [les ] ∞ is proposed which agrees within 20% or less with the majority of the available data.

1,372 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the status of the understanding of fluid flow phenomena particular to microdevices and emphasize the use of MEMS as sensors and actuators for flow diagnosis and control.
Abstract: Manufacturing processes that can create extremely small machines have been developed in recent years. Microelectromechanical systems (MEMS) refer to devices that have characteristic length of less than 1 mm but more than 1 micron, that combine electrical and mechanical components and that are fabricated using integrated circuit batch-processing techniques. Electrostatic, magnetic, pneumatic and thermal actuators, motors, valves, gears, and tweezers of less than 100-μm size have been fabricated. These have been used as sensors for pressure, temperature, mass flow, velocity and sound, as actuators for linear and angular motion and as simple components for complex systems such as micro-heat-engines and micro-heat-pumps The technology is progressing at a rate that fa r exceeds that of our understanding of the unconventional physics involved in the operation as well as the manufacturing of those minute devices. The primary objective of this article is to critically review the status of our understanding of fluid flow phenomena particular to microdevices. In terms of applications, the paper emphasizes the use of MEMS as sensors and actuators for flow diagnosis and control.

1,197 citations

Journal ArticleDOI
TL;DR: In this paper, a general boundary condition that accounts for the reduced momentum and heat exchange with wall surfaces is proposed and its validity is investigated and it is shown that it is applicable in the entire Knudsen range and is second-order accurate in Kn in the slip flow regime.
Abstract: Rarefied gas flows in channels, pipes, and ducts with smooth surfaces are studied in a wide range of Knudsen number (Kn) at low Mach number (M) with the objective of developing simple, physics-based models. Such flows are encountered in microelectromechanical systems (MEMS), in nanotechnology applications, and in low-pressure environments. A new general boundary condition that accounts for the reduced momentum and heat exchange with wall surfaces is proposed and its validity is investigated. It is shown that it is applicable in the entire Knudsen range and is second-order accurate in Kn in the slip flow regime. Based on this boundary condition, a universal scaling for the velocity profile is obtained, which is used to develop a unified model predicting mass flow rate and pressure distribution with reasonable accuracy for channel, pipe, and duct flows in the regime (0 Kn). A rarefaction coefficient is introduced into this two-parameter model to account for the increasingly reduced intermolecular collisions...

1,106 citations