scispace - formally typeset
Search or ask a question
Author

Mikko Äijälä

Bio: Mikko Äijälä is an academic researcher from University of Helsinki. The author has contributed to research in topics: Aerosol & Cloud condensation nuclei. The author has an hindex of 23, co-authored 42 publications receiving 2378 citations.

Papers
More filters
Journal ArticleDOI
22 Feb 2013-Science
TL;DR: Three separate size regimes below 2-nm diameter are identified that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation—more specifically, aerosol formation via neutral pathways.
Abstract: Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub–2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation—more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.

890 citations

Journal ArticleDOI
TL;DR: In this paper, a negative feedback mechanism between the continental biosphere, aerosols and climate was shown to increase the growth of cloud condensation nuclei in continental mid-and high-latitude environments.
Abstract: Atmospheric aerosol particles influence the climate system directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. Apart from black carbon aerosol, aerosols cause a negative radiative forcing at the top of the atmosphere and substantially mitigate the warming caused by greenhouse gases. In the future, tightening of controls on anthropogenic aerosol and precursor vapour emissions to achieve higher air quality may weaken this beneficial effect. Natural aerosols, too, might affect future warming. Here we analyse long-term observations of concentrations and compositions of aerosol particles and their biogenic precursor vapours in continental mid- and high-latitude environments. We use measurements of particle number size distribution together with boundary layer heights derived from reanalysis data to show that the boundary layer burden of cloud condensation nuclei increases exponentially with temperature. Our results confirm a negative feedback mechanism between the continental biosphere, aerosols and climate: aerosol cooling effects are strengthened by rising biogenic organic vapour emissions in response to warming, which in turn enhance condensation on particles and their growth to the size of cloud condensation nuclei. This natural growth mechanism produces roughly 50% of particles at the size of cloud condensation nuclei across Europe. We conclude that biosphere-atmosphere interactions are crucial for aerosol climate effects and can significantly influence the effects of anthropogenic aerosol emission controls, both on climate and air quality. © 2013 Macmillan Publishers Limited. All rights reserved.

275 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the identification of the main organic aerosol sources and define a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data.
Abstract: . Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) and the intensive campaigns of European Monitoring and Evaluation Programme (EMEP) during 2008 (May–June and September–October) and 2009 (February–March). In this paper we focus on the identification of the main organic aerosol sources and we define a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 data sets accounting for two urban, several rural and remote and two high altitude sites; therefore it is likely suitable for the treatment of AMS-related ambient data sets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Generally, our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling purposes.

275 citations

Journal ArticleDOI
TL;DR: In this article, particle phase measurements performed at a suburban site in the Netherlands showed that organic nitrates contribute substantially to particulate nitrate and organic mass, implying a substantial potential of PM reduction by NOx emission control.
Abstract: In the atmosphere nighttime removal of volatile organic compounds is initiated to a large extent by reaction with the nitrate radical (NO3) forming organic nitrates which partition between gas and particulate phase. Here we show based on particle phase measurements performed at a suburban site in the Netherlands that organic nitrates contribute substantially to particulate nitrate and organic mass. Comparisons with a chemistry transport model indicate that most of the measured particulate organic nitrates are formed by NO3 oxidation. Using aerosol composition data from three intensive observation periods at numerous measurement sites across Europe, we conclude that organic nitrates are a considerable fraction of fine particulate matter (PM1) at the continental scale. Organic nitrates represent 34% to 44% of measured submicron aerosol nitrate and are found at all urban and rural sites, implying a substantial potential of PM reduction by NOx emission control.

149 citations

Journal ArticleDOI
TL;DR: In this article, the authors report on the results from factor analysis source apportionment by positive matrix factorization (PMF) utilising the multilinear engine 2 (ME-2).
Abstract: . Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December~2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the factors (HOA: 14.3 ± 2.2 %, COA: 15.0 ± 3.4 %, OOA: 41.5 ± 5.7 %, BBOA: 29.3 ± 5.0 %). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2 %.

119 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
27 Feb 2014-Nature
TL;DR: It is found that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies.
Abstract: Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

1,340 citations

01 Dec 2006
TL;DR: This paper showed that reactive anthropogenic VOCs (AVOCs) produce much larger amounts of SOA than these models predict, even shortly after sunrise, and a significant fraction of the excess SOA is formed from first-generation AVOC oxidation products.
Abstract: [1] The atmospheric chemistry of volatile organic compounds (VOCs) in urban areas results in the formation of ‘photochemical smog’, including secondary organic aerosol (SOA). State-of-the-art SOA models parameterize the results of simulation chamber experiments that bracket the conditions found in the polluted urban atmosphere. Here we show that in the real urban atmosphere reactive anthropogenic VOCs (AVOCs) produce much larger amounts of SOA than these models predict, even shortly after sunrise. Contrary to current belief, a significant fraction of the excess SOA is formed from first-generation AVOC oxidation products. Global models deem AVOCs a very minor contributor to SOA compared to biogenic VOCs (BVOCs). If our results are extrapolated to other urban areas, AVOCs could be responsible for additional 3–25 Tg yr−1 SOA production globally, and cause up to −0.1 W m−2 additional top-of-the-atmosphere radiative cooling.

947 citations

Journal ArticleDOI
TL;DR: The aim of this work was to comprehensively review most of the studies published on this topic in China, including literature concerning field measurements, laboratory studies and the impacts of BB indoors and outdoors in China to provide a basis for formulation of policies and regulations by policy makers in China.

772 citations

Journal ArticleDOI
Joao Almeida1, Joao Almeida2, Siegfried Schobesberger3, Andreas Kürten1, Ismael K. Ortega3, Oona Kupiainen-Määttä3, Arnaud P. Praplan4, Alexey Adamov3, António Amorim5, F. Bianchi4, Martin Breitenlechner6, A. David2, Josef Dommen4, Neil M. Donahue7, Andrew J. Downard8, Eimear M. Dunne9, Jonathan Duplissy3, Sebastian Ehrhart1, Richard C. Flagan8, Alessandro Franchin3, Roberto Guida2, Jani Hakala3, Armin Hansel6, Martin Heinritzi6, Henning Henschel3, Tuija Jokinen3, Heikki Junninen3, Maija Kajos3, Juha Kangasluoma3, Helmi Keskinen10, Agnieszka Kupc11, Theo Kurtén3, Alexander N. Kvashin12, Ari Laaksonen13, Ari Laaksonen10, Katrianne Lehtipalo3, Markus Leiminger1, Johannes Leppä13, Ville Loukonen3, Vladimir Makhmutov12, Serge Mathot2, Matthew J. McGrath14, Tuomo Nieminen15, Tuomo Nieminen3, Tinja Olenius3, Antti Onnela2, Tuukka Petäjä3, Francesco Riccobono4, Ilona Riipinen16, Matti P. Rissanen3, Linda Rondo1, Taina Ruuskanen3, Filipe Duarte Santos5, Nina Sarnela3, Simon Schallhart3, R. Schnitzhofer6, John H. Seinfeld8, Mario Simon1, Mikko Sipilä15, Mikko Sipilä3, Yuri Stozhkov12, Frank Stratmann17, António Tomé5, Jasmin Tröstl4, Georgios Tsagkogeorgas17, Petri Vaattovaara10, Yrjö Viisanen13, Annele Virtanen10, Aron Vrtala11, Paul E. Wagner11, Ernest Weingartner4, Heike Wex17, Christina Williamson1, Daniela Wimmer1, Daniela Wimmer3, Penglin Ye7, Taina Yli-Juuti3, Kenneth S. Carslaw9, Markku Kulmala15, Markku Kulmala3, Joachim Curtius1, Urs Baltensperger4, Douglas R. Worsnop, Hanna Vehkamäki3, Jasper Kirkby2, Jasper Kirkby1 
17 Oct 2013-Nature
TL;DR: The results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Abstract: Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sun ...

738 citations