scispace - formally typeset
Search or ask a question
Author

Miko Elwenspoek

Bio: Miko Elwenspoek is an academic researcher from University of Twente. The author has contributed to research in topics: Reactive-ion etching & Etching (microfabrication). The author has an hindex of 12, co-authored 12 publications receiving 3251 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Black Silicon Method was used to find the processing conditions needed for a vertical wall in a Reactive Ion Etchers (RIE); two parallel plate reactors and a hexode.
Abstract: Very deep treches (up to 200 um) with high aspect ratios (up to 10) in silicon are etched using a fluorine-based plasma (SF6/O2/CHF3). Isotropic, positively and megatively (i.e. reverse) tapered as well as fully vertical walls with smooth surfaces are achieved by controlling the plasma chemistry. A convenient way to find the processing conditions needed for a vertical wall is described: the Black Silicon Method. This new procedure is checked for three different Reactive Ion Etchers (RIE); two parallel plate reactors and a hexode. The influence of the r.f. power, pressure, and gas mixture on the profile will be shown. Scanning Electron Microscope (SEM) photos are included to demonstrate the Black Silicon Method, the influence of the gases on the profile, and the use of this method in fabricating Micro Electro Mechanical Systems (MEMS).

602 citations

Journal ArticleDOI
TL;DR: In this article, four major adhesion mechanisms have been analyzed: capillary forces, hydrogen bridging, electrostatic forces and van der Waals forces, and they have been successfully reduced.
Abstract: Due to the smoothness of the surfaces in surface micromachining, large adhesion forces between fabricated structures and the substrate are encountered. Four major adhesion mechanisms have been analysed: capillary forces, hydrogen bridging, electrostatic forces and van der Waals forces. Once contact is made adhesion forces can be stronger than the restoring elastic forces and even short, thick beams will continue to stick to the substrate. Contact, resulting from drying liquid after release etching, has been successfully reduced. In order to make a fail-safe device stiction during its operational life-time should be anticipated. Electrostatic forces and acceleration forces caused by shocks encountered by the device can be large enough to bring structures into contact with the substrate. In order to avoid in-use stiction adhesion forces should therefore be minimized. This is possible by coating the device with weakly adhesive materials, by using bumps and side-wall spacers and by increasing the surface roughness at the interface. Capillary condensation should also be taken into account as this can lead to large increases in the contact area of roughened surfaces.

543 citations

Journal ArticleDOI
TL;DR: In this article, a brief review of dry etching as applied to pattern transfer, primarily in silicon technology, is presented, focusing on concepts and topics for etching materials of interest in micromechanics.
Abstract: This article is a brief review of dry etching as applied to pattern transfer, primarily in silicon technology. It focuses on concepts and topics for etching materials of interest in micromechanics. The basis of plasma-assisted etching, the main dry etching technique, is explained and plasma system configurations are described such as reactive ion etching (RIE). An important feature of RIE is its ability to achieve etch directionality. The mechanism behind this directionality and various plasma chemistries to fulfil this task will be explained. Multi-step plasma chemistries are found to be useful to etch, release and passivate micromechanical structures in one run successfully. Plasma etching is extremely sensitive to many variables, making etch results inconsistent and irreproducible. Therefore, important plasma parameters, mask materials and their influences will be treated. Moreover, RIE has its own specific problems, and solutions will be formulated. The result of an RIE process depends in a non-linear way on a great number of parameters. Therefore, a careful data acquisition is necessary. Also, plasma monitoring is needed for the determination of the etch end point for a given process. This review is ended with some promising current trends in plasma etching.

456 citations

Book
01 Jan 1998

294 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present guidelines for the deep reactive ion etching (DRIE) of silicon MEMS structures, employing SF/sub 6/O/sub 2/based high-density plasmas at cryogenic temperatures.
Abstract: This paper presents guidelines for the deep reactive ion etching (DRIE) of silicon MEMS structures, employing SF/sub 6//O/sub 2/-based high-density plasmas at cryogenic temperatures. Procedures of how to tune the equipment for optimal results with respect to etch rate and profile control are described. Profile control is a delicate balance between the respective etching and deposition rates of a SiO/sub x/F/sub y/ passivation layer on the sidewalls and bottom of an etched structure in relation to the silicon removal rate from unpassivated areas. Any parameter that affects the relative rates of these processes has an effect on profile control. The deposition of the SiO/sub x/F/sub y/ layer is mainly determined by the oxygen content in the SF/sub 6/ gas flow and the electrode temperature. Removal of the SiO/sub x/F/sub y/ layer is mainly determined by the kinetic energy (self-bias) of ions in the SF/sub 6//O/sub 2/ plasma. Diagrams for profile control are given as a function of parameter settings, employing the previously published "black silicon method". Parameter settings for high rate silicon bulk etching, and the etching of micro needles and micro moulds are discussed, which demonstrate the usefulness of the diagrams for optimal design of etched features. Furthermore, it is demonstrated that in order to use the oxygen flow as a control parameter for cryogenic DRIE, it is necessary to avoid or at least restrict the presence of fused silica as a dome material, because this material may release oxygen due to corrosion during operation of the plasma source. When inert dome materials like alumina are used, etching recipes can be defined for a broad variety of microstructures in the cryogenic temperature regime. Recipes with relatively low oxygen content (1-10% of the total gas volume) and ions with low kinetic energy can now be applied to observe a low lateral etch rate beneath the mask, and a high selectivity (more than 500) of silicon etching with respect to polymers and oxide mask materials is obtained. Crystallographic preference etching of silicon is observed at low wafer temperature (-120/spl deg/C). This effect is enhanced by increasing the process pressure above 10 mtorr or for low ion energies (below 20 eV).

277 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the theoretical mechanisms of the wetting of rough surfaces are presented followed by the characterization of natural leaf surfaces and a comprehensive review is presented on artificial super-hydrophobic surfaces fabricated using various fabrication techniques and the influence of micro-, nano-and hierarchical structures on superhydrophobicity, self-cleaning, low adhesion, and drag reduction.

1,610 citations

Journal ArticleDOI
David Quéré1
TL;DR: In this paper, the authors describe how to make droplets stick to their substrates (even if they are inclined), which is a practical issue in many cases (windshields, window panes, greenhouses, or microfluidic devices).
Abstract: While the behaviour of large amounts of liquid is dictated by gravity, surface forces become dominant at small scales. They have for example the remarkable ability to make droplets stick to their substrates (even if they are inclined), which is a practical issue in many cases (windshields, window panes, greenhouses, or microfluidic devices). Here we describe how this problem can be overcome with super-hydrophobic materials. These materials are often developed thanks to micro-textures, which decorate a solid surface, and we describe the way such textures modify the wettability of that solid. We conclude by showing the unusual dynamics of drops in a super-hydrophobic situation.

1,176 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of existing polymer microfabrication technologies for microfluidic applications, namely replication methods such as hot embossing, injection molding and casting, and the technologies necessary to fabricate the molding masters.
Abstract: A growing number of microsystem technology (MST) applications, particularly in the field of microfluidics with its applications in the life sciences, have a need for novel fabrication methods which account for substrates other than silicon or glass. We present in this paper an overview of existing polymer microfabrication technologies for microfluidic applications, namely replication methods such as hot embossing, injection molding and casting, and the technologies necessary to fabricate the molding masters. In addition, techniques such as laser ablation and layering techniques are examined. Methods for bonding and dicing of polymer materials, which are necessary for complete systems, are evaluated.

853 citations

Journal ArticleDOI
TL;DR: This tutorial review outlines the fundamental work performed on continuous flow acoustic standing wave separation of particles in macro scale systems and discusses several potential applications in life science research and in the medical clinic.
Abstract: Acoustic standing wave technology combined with microtechnology opens up new areas for the development of advanced particle and cell separating microfluidic systems. This tutorial review outlines the fundamental work performed on continuous flow acoustic standing wave separation of particles in macro scale systems. The transition to the microchip format is further surveyed, where both fabrication and design issues are discussed. The acoustic technology offers attractive features, such as reasonable throughput and ability to separate particles in a size domain of about tenths of micrometers to tens of micrometers. Examples of different particle separation modes enabled in microfluidic chips, utilizing standing wave technology, are described along a discussion of several potential applications in life science research and in the medical clinic. Chip integrated acoustic standing wave separation technology is still in its infancy and it can be anticipated that new laboratory standards very well may emerge from the current research.

802 citations