scispace - formally typeset
Search or ask a question
Author

Milan Brandt

Bio: Milan Brandt is an academic researcher from RMIT University. The author has contributed to research in topics: Laser power scaling & Machining. The author has an hindex of 47, co-authored 293 publications receiving 9297 citations. Previous affiliations of Milan Brandt include Swinburne University of Technology & Commonwealth Scientific and Industrial Research Organisation.


Papers
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys are reviewed.

1,393 citations

Journal ArticleDOI
TL;DR: In this paper, a new ultrafine lamellar microstructures comprising ultrafine (∼200-300nm) α-laths and retained β phases were created via promoting in situ decomposition of a near α′ martensitic structure in Ti-6Al-4V additively manufactured by selective laser melting (SLM).

839 citations

Journal ArticleDOI
TL;DR: A comprehensive summary of the experimental data reported on the mechanical response of Selective Laser Melting (SLM) lattice structures can be found in this paper, where the design, fabrication and performance of SLM lattice structure are reviewed and the quality of data reported to inform best-practice for future studies.

580 citations

Journal ArticleDOI
Wei Xu1, Wei Xu2, E. W. Lui2, Aaron Pateras2, Ma Qian2, Milan Brandt2 
TL;DR: In this article, the lattice parameter of the β phase in the (α+β) lamellae falls into a specific range of 3.18-3.21 A. The lattice parameters can serve as an indicator to predict whether significant martensite decomposition has taken place in situ in Ti-6Al-4V made by SLM.

420 citations

Journal ArticleDOI
TL;DR: In this article, a cyclic force was produced during the formation of segmented chips and the force frequency was the same as the chip segmentation frequency, and the peak of the cyclic forces was 1.18 times that producing the continuous chip.
Abstract: Chip formation during dry turning of Ti6Al4V alloy has been examined in association with dynamic cutting force measurements under different cutting speeds, feed rates and depths of cut. Both continuous and segmented chip formation processes were observed in one cut under conditions of low cutting speed and large feed rate. The slipping angle in the segmented chip was 55°, which was higher than that in the continuous chip (38°). A cyclic force was produced during the formation of segmented chips and the force frequency was the same as the chip segmentation frequency. The peak of the cyclic force when producing segmented chips was 1.18 times that producing the continuous chip. The undeformed surface length in the segmented chip was found to increase linearly with the feed rate but was independent of cutting speed and depth of cut. The cyclic force frequency increased linearly with cutting speed and decreased inversely with feed rate. The cutting force increased with the feed rate and depth of cut at constant cutting speed due to the large volume of material being removed. The increase in cutting force with increasing cutting speed from 10 to 16 and 57 to 75 m/min was attributed to the strain rate hardening at low and high strain rates, respectively. The decrease in cutting force with increasing cutting speed outside these speed ranges was due to the thermal softening of the material. The amplitude variation of the high-frequency cyclic force associated with the segmented chip formation increased with increasing depth of cut and feed rate, and decreased with increasing cutting speed from 57 m/min except at the cutting speeds where harmonic vibration of the machine occurs.

403 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the complex relationship between additive manufacturing processes, microstructure and resulting properties for metals, and typical microstructures for additively manufactured steel, aluminium and titanium are presented.

2,837 citations

01 Jan 2007

1,932 citations