scispace - formally typeset
Search or ask a question
Author

Milan Vanecek

Other affiliations: CSAV
Bio: Milan Vanecek is an academic researcher from Academy of Sciences of the Czech Republic. The author has contributed to research in topics: Thin film & Diamond. The author has an hindex of 26, co-authored 91 publications receiving 4127 citations. Previous affiliations of Milan Vanecek include CSAV.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of aluminum-doped zinc oxide (ZnO:Al) front contact and the role of the back reflector on the performance of thin-film silicon solar cells is investigated.

1,013 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the use of hydrogenated amorphous silicon (a-Si:H) and hydrogenated micro-crystalline silicon (μc-Si-H) thin films (layers), both deposited at low temperatures (200°C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen.
Abstract: This paper describes the use, within p–i–n- and n–i–p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (μc-Si:H) thin films (layers), both deposited at low temperatures (200°C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. These properties are linked to the microstructure and hence to the i-layer deposition rate, that in turn, affects throughput in production. The importance of contact and reflection layers in achieving low electrical and optical losses is explained, particularly for the superstrate case. Especially the required properties for the transparent conductive oxide (TCO) need to be well balanced in order to provide, at the same time, for high electrical conductivity (preferably by high electron mobility), low optical absorption and surface texture (for low optical losses and pronounced light trapping). Single-junction amorphous and microcrystalline p–i–n-type solar cells, as fabricated so far, are compared in their key parameters (Jsc, FF, Voc) with the [theoretical] limiting values. Tandem and multijunction cells are introduced; the μc-Si: H/a-Si: H or [micromorph] tandem solar cell concept is explained in detail, and recent results obtained here are listed and commented. Factors governing the mass-production of thin-film silicon modules are determined both by inherent technical reasons, described in detail, and by economic considerations. The cumulative effect of these factors results in distinct efficiency reductions from values of record laboratory cells to statistical averages of production modules. Finally, applications of thin-film silicon PV modules, especially in building-integrated PV (BIPV) are shown. In this context, the energy yields of thin-film silicon modules emerge as a valuable gauge for module performance, and compare very favourably with those of other PV technologies. Copyright © 2004 John Wiley & Sons, Ltd.

718 citations

Journal ArticleDOI
TL;DR: In this article, the absorption losses at a nanorough silver back reflector of a solar cell were measured with high accuracy by photothermal deflection spectroscopy, and their roughness was characterized by atomic force microscopy.
Abstract: Absorption losses at a nanorough silver back reflector of a solar cell were measured with high accuracy by photothermal deflection spectroscopy. Roughness was characterized by atomic force microscopy. The observed increase of absorption, compared to the smooth silver, was explained by the surface plasmon absorption. Two series of silver back reflectors (one covered with thin ZnO layer) were investigated and their absorption related to surface morphology.

242 citations

Journal ArticleDOI
TL;DR: In this paper, the spectral dependence of the optical absorption coefficient in thin films of hydrogenated microcrystalline silicon is measured over nine orders of magnitude in the subgap, defect-connected region, and in the above-the-band gap region.
Abstract: The spectral dependence of the optical absorption coefficient in thin films of hydrogenated microcrystalline silicon is measured over nine orders of magnitude in the subgap, defect-connected region, and in the above-the-band gap region Transmittance, reflectance, and constant photocurrent method measurements are combined with Fourier-transform photocurrent spectroscopy (FTPS) Results are analyzed and interpreted as due to electron transitions from defects or interband electron transitions, all having direct relevance to the thin-film microcrystalline silicon solar cell performance FTPS is a fast and sensitive quantitative method for quality assessment of microcrystalline silicon absorber in solar cells and can be used for quality monitoring in solar cell production

176 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of front TCO thickness, surface texture and different back reflectors on short-circuit current density and fill factor of thin film silicon solar cells were investigated.

155 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2007-Nature
TL;DR: These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis, and might find general usage as elements for powering ultralow-power electronics and diverse nanosystems.
Abstract: Solar cells are attractive candidates for clean and renewable power; with miniaturization, they might also serve as integrated power sources for nanoelectronic systems. The use of nanostructures or nanostructured materials represents a general approach to reduce both cost and size and to improve efficiency in photovoltaics. Nanoparticles, nanorods and nanowires have been used to improve charge collection efficiency in polymer-blend and dye-sensitized solar cells, to demonstrate carrier multiplication, and to enable low-temperature processing of photovoltaic devices. Moreover, recent theoretical studies have indicated that coaxial nanowire structures could improve carrier collection and overall efficiency with respect to single-crystal bulk semiconductors of the same materials. However, solar cells based on hybrid nanoarchitectures suffer from relatively low efficiencies and poor stabilities. In addition, previous studies have not yet addressed their use as photovoltaic power elements in nanoelectronics. Here we report the realization of p-type/intrinsic/n-type (p-i-n) coaxial silicon nanowire solar cells. Under one solar equivalent (1-sun) illumination, the p-i-n silicon nanowire elements yield a maximum power output of up to 200 pW per nanowire device and an apparent energy conversion efficiency of up to 3.4 per cent, with stable and improved efficiencies achievable at high-flux illuminations. Furthermore, we show that individual and interconnected silicon nanowire photovoltaic elements can serve as robust power sources to drive functional nanoelectronic sensors and logic gates. These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis, and might find general usage as elements for powering ultralow-power electronics and diverse nanosystems.

2,879 citations

Journal ArticleDOI
TL;DR: Using highly sensitive photothermal deflection and photocurrent spectroscopy, the absorption spectrum of CH3NH3PbI3 perovskite thin films at room temperature is measured, finding a high absorption coefficient with particularly sharp onset and a compositional change of the material.
Abstract: Solar cells based on organometallic halide perovskite absorber layers are emerging as a high-performance photovoltaic technology. Using highly sensitive photothermal deflection and photocurrent spectroscopy, we measure the absorption spectrum of CH3NH3PbI3 perovskite thin films at room temperature. We find a high absorption coefficient with particularly sharp onset. Below the bandgap, the absorption is exponential over more than four decades with an Urbach energy as small as 15 meV, which suggests a well-ordered microstructure. No deep states are found down to the detection limit of ∼1 cm–1. These results confirm the excellent electronic properties of perovskite thin films, enabling the very high open-circuit voltages reported for perovskite solar cells. Following intentional moisture ingress, we find that the absorption at photon energies below 2.4 eV is strongly reduced, pointing to a compositional change of the material.

2,099 citations

Journal ArticleDOI
TL;DR: In this paper, the bulk absorber layer of CH3NH3PbI3−xClx perovskite solar cells was reduced from 500 to <150 °C and achieved power conversion efficiency up to 12.3%.
Abstract: We have reduced the processing temperature of the bulk absorber layer in CH3NH3PbI3−xClx perovskite solar cells from 500 to <150 °C and achieved power conversion efficiencies up to 12.3%. Remarkably, we find that devices with planar thin-film architecture, where the ambipolar perovskite transports both holes and electrons, convert the absorbed photons into collected charge with close to 100% efficiency.

1,524 citations

Journal ArticleDOI
TL;DR: In this article, the photovoltaic technology, its power generating capability, the different existing light absorbing materials used, its environmental aspect coupled with a variety of its applications have been discussed.
Abstract: Global environmental concerns and the escalating demand for energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Solar energy is the most abundant, inexhaustible and clean of all the renewable energy resources till date. The power from sun intercepted by the earth is about 1.8 × 1011 MW, which is many times larger than the present rate of all the energy consumption. Photovoltaic technology is one of the finest ways to harness the solar power. This paper reviews the photovoltaic technology, its power generating capability, the different existing light absorbing materials used, its environmental aspect coupled with a variety of its applications. The different existing performance and reliability evaluation models, sizing and control, grid connection and distribution have also been discussed. © 2011 Published by Elsevier Ltd.

1,524 citations

Journal ArticleDOI
TL;DR: The scattering from metal nanoparticles near their localized plasmon resonance is a promising way of increasing the light absorption in thin-film solar cells and experimental and theoretical progress is reviewed.
Abstract: The scattering from metal nanoparticles near their localized plasmon resonance is a promising way of increasing the light absorption in thin-film solar cells. Enhancements in photocurrent have been observed for a wide range of semiconductors and solar cell configurations. We review experimental and theoretical progress that has been made in recent years, describe the basic mechanisms at work, and provide an outlook on future prospects in this area.

1,464 citations