scispace - formally typeset
M

Mildred S. Dresselhaus

Researcher at Massachusetts Institute of Technology

Publications -  763
Citations -  122381

Mildred S. Dresselhaus is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Carbon nanotube & Raman spectroscopy. The author has an hindex of 136, co-authored 762 publications receiving 112525 citations. Previous affiliations of Mildred S. Dresselhaus include University of California, Los Angeles & Universidade Federal de Minas Gerais.

Papers
More filters
Journal ArticleDOI

Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition

TL;DR: The transparency, conductivity, and ambipolar transfer characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.
Journal ArticleDOI

Raman spectroscopy in graphene

TL;DR: In this article, the authors discuss the first-order and double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features and give special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal configuration.
Journal ArticleDOI

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys

TL;DR: Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects, which makes these materials useful for cooling and power generation.
Journal ArticleDOI

Raman spectroscopy of carbon nanotubes

TL;DR: The use of Raman spectroscopy to reveal the remarkable structure and the unusual electronic and phonon properties of single wall carbon nanotubes (SWNTs) is reviewed comprehensively in this article.
Journal ArticleDOI

Edge state in graphene ribbons: Nanometer size effect and edge shape dependence.

TL;DR: It is found that a non-negligible edge state survives even in graphene ribbons with less developed zigzag edges, when the system size is on a nanometer scale.