scispace - formally typeset
Search or ask a question
Author

Mildred S. Dresselhaus

Bio: Mildred S. Dresselhaus is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Carbon nanotube & Raman spectroscopy. The author has an hindex of 136, co-authored 762 publications receiving 112525 citations. Previous affiliations of Mildred S. Dresselhaus include University of California, Los Angeles & Universidade Federal de Minas Gerais.


Papers
More filters
Journal ArticleDOI
TL;DR: Extended abstract of a paper presented at Microscopy and Microanalysis 2005 in Honolulu, Hawaii, USA, July 31-August 4, 2005 as mentioned in this paper, presented by as mentioned in this paper.
Abstract: Extended abstract of a paper presented at Microscopy and Microanalysis 2005 in Honolulu, Hawaii, USA, July 31--August 4, 2005

2 citations

Book ChapterDOI
01 Jan 1974
TL;DR: In this article, a quantitative treatment of the lowest quantum-number j=0 Landau levels of the electrons in Bi has important consequences for the description of a magnetic field-induced semimetal-semiconductor transition.
Abstract: The unusual behavior of the lowest quantum-number j=0 Landau levels of the electrons in Bi has important consequences for the description of a magnetic field-induced semimetal-semiconductor transition. We discuss a quantitative treatment of the j=0 Landau levels, based upon the Baraff Hamiltonian, and including the kH-dependence. Magnetoreflection experiments over a range of photon energies on Bi, Bi98Sb2 and Bi97Sb3 for \(\overrightarrow H \) || binary axis provide experimental confirmation for the model. For large H, the kH-dependence of the j=0 levels is anomalous, showing a “camel-back” shape. As the j=0 conduction band level at kH=O crosses EF, magnetic field-induced carrier pockets are formed away from kH=0. The implications of these magnetic field-induced pockets on a semimetal-semiconductor transition are discussed.

2 citations

Posted Content
TL;DR: In this article, a new concept of pseudo-ZTZT is introduced, which can finally make it clear what variables really decide ZT, and clarify the historical misunderstanding of many thermoelectric performance enhancing proposals.
Abstract: Thermoelectrics involves both the generation of electrical power from heat flow, and the efficient refrigeration using electricity, which has been intensively focused on for two decades. The performance of thermoelectric power generation and refrigeration has been improved by many proposals since 1993, which is, however, the currently not yet in an industrially competitive level. The development of the entire filed has come to a puzzling point, where the physical reason of why this energy conversion efficiency enhancing problem is barely soluble, and the physical answer of how it should be re-formed to be soluble are the most urgent questions in this field. We here answer these questions and provide the guidance on how to design the of thermoelectric figure of merit enhancement in various systems using different approaches for future researches. We start from criticizing the current way of expression the thermoelectric figure of merit ZT and then introduce the new concept of pseudo-ZT, which can finally make it clear what variables really decides ZT, and clarify the historical misunderstanding of many thermoelectric performance enhancing proposals. Then we explore the most important question on what variables really enhance ZT, and give the contemporary researchers a new guidance on what is the correct direction of thermoelectric performance improving for various systems.

2 citations


Cited by
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
Sumio Iijima1
01 Nov 1991-Nature
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Abstract: THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes. On 7 November 1991, Sumio Iijima announced in Nature the preparation of nanometre-size, needle-like tubes of carbon — now familiar as 'nanotubes'. Used in microelectronic circuitry and microscopy, and as a tool to test quantum mechanics and model biological systems, nanotubes seem to have unlimited potential.

39,086 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations