scispace - formally typeset
Search or ask a question
Author

Mildred S. Dresselhaus

Bio: Mildred S. Dresselhaus is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Carbon nanotube & Raman spectroscopy. The author has an hindex of 136, co-authored 762 publications receiving 112525 citations. Previous affiliations of Mildred S. Dresselhaus include University of California, Los Angeles & Universidade Federal de Minas Gerais.


Papers
More filters
Patent
13 Apr 2009
TL;DR: In this paper, a film of single-layer to few-layer graphene is formed by depositing a graphene film via chemical vapor deposition on a surface of a growth substrate, where the surface on which the graphene is deposited can be a polycrystalline nickel film, which is deposited by evaporation on a SiO 2 /Si substrate.
Abstract: A film of single-layer to few-layer graphene is formed by depositing a graphene film via chemical vapor deposition on a surface of a growth substrate. The surface on which the graphene is deposited can be a polycrystalline nickel film, which is deposited by evaporation on a SiO 2 /Si substrate. A protective support layer is then coated on the graphene film to provide support for the graphene film and to maintain its integrity when it is removed from the growth substrate. The surface of the growth substrate is then etched to release the graphene film and the protective support layer from the growth substrate, wherein the protective support layer maintains the integrity of the graphene film during and after its release from the growth substrate. After being released from the growth substrate, the graphene film and protective support layer can be applied onto an arbitrary target substrate for evaluation or use in any of a wide variety of applications.

202 citations

Journal ArticleDOI
TL;DR: In this paper, a large area (1 cm × 1.5 cm) of parallel wires with diameters as small as 13 nm, lengths of 30-50 μm, and packing density as high as 7.1 × 1010 cm−2 has been fabricated.
Abstract: Ultrafine bismuth nanowire arrays were synthesized by injecting its liquid melt into nanochannels of a porous anodic alumina template. A large area (1 cm × 1.5 cm) of parallel wires with diameters as small as 13 nm, lengths of 30–50 μm, and packing density as high as 7.1 × 1010 cm−2 has been fabricated. X-ray diffraction patterns revealed these nanowires, embedded in the insulating matrix, to be essentially single crystalline and highly oriented. The optical absorption spectra of the nanowire arrays indicate that these bismuth nanowires undergo a semimetal-to-semiconductor transition due to two-dimensional quantum confinement effects.

202 citations

Journal ArticleDOI
11 Oct 2011-ACS Nano
TL;DR: A systematic experimental and theoretical analysis of the Raman modes in bothBernal (ABA stacking order) and rhombohedral trilayer graphene (3LG) shows that the G band, G' (2D) band, and the intermediate-frequency combination modes of 3LGs are sensitive to the stacking order of 3LG.
Abstract: Bernal (ABA stacking order) and rhombohedral (ABC) trilayer graphene (3LG) are characterized by Raman spectroscopy. From a systematic experimental and theoretical analysis of the Raman modes in both of these 3LGs, we show that the G band, G' (2D) band, and the intermediate-frequency combination modes of 3LGs are sensitive to the stacking order of 3LG. The phonon wavevector q, that gives the double resonance Raman spectra is larger in ABC than ABA, which is the reason why we get the different Raman frequencies and their spectral widths for ABA and ABC 3LG. The weak electron-phonon interaction in ABC-stacked 3LG and the localized strain at the boundary between ABC- and ABA-stacked domains are clearly reflected by the softening of the G mode and the G' mode, respectively.

197 citations

Journal ArticleDOI
TL;DR: Growth of highly uniform and well-aligned ZnO nanowire arrays on graphene by modifying the graphene surface with conductive polymer interlayers is demonstrated and it is demonstrated that it can serve as a viable replacement for ITO in various photovoltaic device configurations.
Abstract: Growth of semiconducting nanostructures on graphene would open up opportunities for the development of flexible optoelectronic devices, but challenges remain in preserving the structural and electrical properties of graphene during this process. We demonstrate growth of highly uniform and well-aligned ZnO nanowire arrays on graphene by modifying the graphene surface with conductive polymer interlayers. On the basis of this structure, we then demonstrate graphene cathode-based hybrid solar cells using two different photoactive materials, PbS quantum dots and the conjugated polymer P3HT, with AM 1.5G power conversion efficiencies of 4.2% and 0.5%, respectively, approaching the performance of ITO-based devices with similar architectures. Our method preserves beneficial properties of graphene and demonstrates that it can serve as a viable replacement for ITO in various photovoltaic device configurations.

193 citations

Journal ArticleDOI
TL;DR: In this paper, the Boltzmann transport equation under the relaxation-time approximation was used to calculate the thermoelectric properties of $n$-type and $p$ -type SiGe nanocomposites.
Abstract: Nanocomposite thermoelectric materials have attracted much attention recently due to experimental demonstrations of improved thermoelectric properties over those of the corresponding bulk material. In order to better understand the reported data and to gain insight into transport in nanocomposites, we use the Boltzmann transport equation under the relaxation-time approximation to calculate the thermoelectric properties of $n$-type and $p$-type SiGe nanocomposites. We account for the strong grain-boundary scattering mechanism in nanocomposites using phonon and electron grain-boundary scattering models. The results from this analysis are in excellent agreement with recently reported measurements for the $n$-type nanocomposite but the experimental Seebeck coefficient for the $p$-type nanocomposite is approximately 25% higher than the model's prediction. The reason for this discrepancy is not clear at the present time and warrants further investigation. Using new mobility measurements and the model, we find that dopant precipitation is an important process in both $n$-type and $p$-type nanocomposites, in contrast to bulk SiGe, where dopant precipitation is most significant only in $n$-type materials. The model also shows that the potential barrier at the grain boundary required to explain the data is several times larger than the value estimated using the Poisson equation, indicating the presence of crystal defects in the material. This suggests that an improvement in mobility is possible by reducing the number of defects or reducing the number of trapping states at the grain boundaries.

191 citations


Cited by
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
Sumio Iijima1
01 Nov 1991-Nature
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Abstract: THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes. On 7 November 1991, Sumio Iijima announced in Nature the preparation of nanometre-size, needle-like tubes of carbon — now familiar as 'nanotubes'. Used in microelectronic circuitry and microscopy, and as a tool to test quantum mechanics and model biological systems, nanotubes seem to have unlimited potential.

39,086 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations