scispace - formally typeset
Search or ask a question
Author

Mildred S. Dresselhaus

Bio: Mildred S. Dresselhaus is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Carbon nanotube & Raman spectroscopy. The author has an hindex of 136, co-authored 762 publications receiving 112525 citations. Previous affiliations of Mildred S. Dresselhaus include University of California, Los Angeles & Universidade Federal de Minas Gerais.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a phenomenological model based on staging periodicity and in-plane superlattice symmetry is developed for the phonon dispersion relations of graphite intercalation compounds, analogous to the formalism developed for electronic dispersion relation.
Abstract: A phenomenological model based on staging periodicity and in-plane superlattice symmetry is developed for the phonon dispersion relations of graphite intercalation compounds, analogous to the formalism developed for the electronic dispersion relations. The formalism, based on the zone folding of the graphite dynamical matrix required by symmetry, gives with a minimum number of parameters the only available calculation for the phonon dispersion relations for high-stage compounds. Specific application of the model to a ${\mathrm{C}}_{2n}X$ structure yields results in good agreement with the stage dependence of the lattice mode spectra, indicating that the staging periodicity is the dominant effect in these compounds. Implications on the velocity of sound, second-order Raman spectrum, and specific-heat measurements are discussed.

20 citations

Journal ArticleDOI
TL;DR: Analysis on quantum perturbation theory and first-principles calculations on the anisotropic electron distributions in BP demonstrated that electron-phonon coupling with considering the symmetry of the involved excited states and phonon vibration patterns, is responsible for this phenomenon.
Abstract: Electron–phonon coupling in two-dimensional nanomaterials plays a fundamental role in determining their physical properties. Such interplay is particularly intriguing in semiconducting black phosph...

20 citations

Journal ArticleDOI
TL;DR: In this paper, gate-modulated and laser-dependent Raman spectroscopy have been widely used to study $q=0$ zone center phonon modes, their self-energy, and their coupling to electrons in graphene systems.
Abstract: Gate-modulated and laser-dependent Raman spectroscopy have been widely used to study $q=0$ zone center phonon modes, their self-energy, and their coupling to electrons in graphene systems. In this work we use gate-modulated Raman of $q\ensuremath{ e}0$ phonons as a technique to understand the nature of five second-order Raman combination modes observed in the frequency range of 1700--2300 cm${}^{\ensuremath{-}1}$ of single-layer graphene (SLG). Anomalous phonon self-energy renormalization phenomena are observed in all five combination modes within this intermediate frequency region, which can clearly be distinguished from one another. By combining the anomalous phonon renormalization effect with the double resonance Raman theory, which includes both phonon dispersion relations and angular dependence of the electron-phonon scattering matrix elements, and by comparing it to the experimentally obtained phonon dispersion, measured by using different laser excitation energies, we can assign each Raman peak to the proper phonon combination mode. This approach should also shed light on the understanding of more complex structures such as few-layer graphene (FLG) and its stacking orders as well as other two-dimensional (2D)-like materials.

20 citations

Journal ArticleDOI
TL;DR: In this article, a large enhancement in the thermoelectric figure of merit for the whole superlattice, Z 3D T, is predicted for short period GaAs/AlAs super-lattices relative to bulk GaAs.
Abstract: A large enhancement in the thermoelectric figure of merit for the whole superlattice, Z 3D T, is predicted for short period GaAs/AlAs superlattices relative to bulk GaAs. Various superlattice parameters (superlattice growth direction, superlattice period and layer thicknesses) are explored to optimize Z 3D T, including quantum wells formed at various high symmetry points in the Brillouin zone. The highest room temperature Z 3D T obtained in the present calculation is 0.41 at the optimum carrier concentration for either (001) or (111) oriented GaAs(20 A)/AIAs(20 A) superlattices, which is about 50 times greater than the corresponding ZT for bulk GaAs obtained using the same basic model.

20 citations

Journal ArticleDOI
TL;DR: This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires.
Abstract: This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C(60) and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature 338 257-9, Rao et al 1997b Phys. Rev. B 55 4766-73, Rao et al 1997c Science 275 187-91, Rao et al 1998 Thin Solid Films 331 141-7). His careful sample treatment and detailed Raman analysis contributed greatly to the elucidation of photochemical polymerization of solid C(60) (Rao et al 1993b Science 259 955-7). He developed Raman spectroscopy as a standard tool for gauging the diameter of a single-walled carbon nanotube (Bandow et al 1998 Phys. Rev. Lett. 80 3779-82), distinguishing metallic versus semiconducting single-walled carbon nanotubes, (Pimenta et al 1998a J. Mater. Res. 13 2396-404) and measuring the number of graphene layers in a peeled flake of graphite (Gupta et al 2006 Nano Lett. 6 2667-73). For these and other ground breaking contributions to carbon science he received the Graffin Lecture award from the American Carbon Society in 2005, and the Japan Carbon Prize in 2008. As a material, graphite has come full circle. The 1970s renaissance in the science of graphite intercalation compounds paved the way for a later explosion in nanocarbon research by illuminating many beautiful fundamental phenomena, subsequently rediscovered in other forms of nanocarbon. In 1985, Smalley, Kroto, Curl, Heath and O'Brien discovered carbon cage molecules called fullerenes in the soot ablated from a rotating graphite target (Kroto et al 1985 Nature 318 162-3). At that time, Peter's research was focused mainly on the oxide-based high-temperature superconductors. He switched to fullerene research soon after the discovery that an electric arc can prepare fullerenes in bulk quantities (Haufler et al 1990 J. Phys. Chem. 94 8634-6). Later fullerene research spawned nanotubes, and nanotubes spawned a newly exploding research effort on single-layer graphene. Graphene has hence evolved from an oversimplified model of graphite (Wallace 1947 Phys. Rev. 71 622-34) to a new member of the nanocarbon family exhibiting extraordinary electronic properties. Eklund's career spans this 35-year odyssey.

20 citations


Cited by
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
Sumio Iijima1
01 Nov 1991-Nature
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Abstract: THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes. On 7 November 1991, Sumio Iijima announced in Nature the preparation of nanometre-size, needle-like tubes of carbon — now familiar as 'nanotubes'. Used in microelectronic circuitry and microscopy, and as a tool to test quantum mechanics and model biological systems, nanotubes seem to have unlimited potential.

39,086 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations