scispace - formally typeset
Search or ask a question
Author

Mildred S. Dresselhaus

Bio: Mildred S. Dresselhaus is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Carbon nanotube & Raman spectroscopy. The author has an hindex of 136, co-authored 762 publications receiving 112525 citations. Previous affiliations of Mildred S. Dresselhaus include University of California, Los Angeles & Universidade Federal de Minas Gerais.


Papers
More filters
Book ChapterDOI
01 Jan 1988
TL;DR: Very few measurements have been reported in the open literature on the structure and properties of carbon fibers above room temperature [Rowe and Lowe 1977; Sheehan 1987] as discussed by the authors, and this approach will be used in this section where results on fibers are lacking.
Abstract: Very few measurements have been reported in the open literature on the structure and properties of carbon fibers above room temperature [Rowe and Lowe 1977; Sheehan 1987]. However, there is a somewhat larger literature on the properties of carbons at elevated temperatures [Lutcov et al. 1970; Tanaka and Suzuki 1972; Null et al. 1973; Leider et al. 1973]. Some high temperature properties of fibers can be estimated by analogy to bulk graphite results, and this approach will be used in this section where results on fibers are lacking.

14 citations

Journal ArticleDOI
TL;DR: In this paper, the authors performed Raman spectroscopy experiments on undoped and boron-doped double walled carbon nanotubes DWNTs that exhibit the "coalescence inducing mode".
Abstract: We performed Raman spectroscopy experiments on undoped and boron-doped double walled carbon nanotubes DWNTs that exhibit the “coalescence inducing mode” as these DWNTs are heat treated to temperatures between 1200 ° C and 2000 ° C. The fact that boron doping promotes DWNT coalescence at lower temperatures allowed us to study in greater detail the behavior of first- and second-order Raman modes as a function of temperature with regard to the coalescence process. Furthermore, by using various excitation laser energies we probed DWNTs with different metallic M and semiconducting S inner and outer tubes. We find that regardless of their M and S configurations, the smaller diameter nanotubes disappear at a faster rate than their larger diameter counterparts as the heat treatment temperature is increased. We also observe that the frequency of the G band is mostly determined by the diameter of the semiconducting layer of those DWNTs that are in resonance with the laser excitation energy. Finally, we explain the contributions to the G band from the inner and outer layers of a DWNT.

14 citations

Journal ArticleDOI
01 May 2016-Carbon
TL;DR: In this article, a 3D porous polyacrylonitrile (PAN) and carbon nanotubes (CNT) monolith with high electrical and thermal conductivities was produced by using unmodified multi-walled CNTs and PAN starting compounds through a template-free thermally induced phase separation approach.

14 citations

Journal ArticleDOI
TL;DR: These findings provide useful guidelines for the development of bioinspired, multifunctional systems whose hierarchical structure imparts tailored mechanical properties and cycling stability, which is essential for applications such as actuators or flexible electrodes for advanced energy storage.
Abstract: Nature has evolved hierarchical structures of hybrid materials with excellent mechanical properties. Inspired by nacre’s architecture, a ternary nanostructured composite has been developed, wherein stacked lamellas of 1D vanadium pentoxide nanofibres, intercalated with water molecules, are complemented by 2D graphene oxide (GO) nanosheets. The components self-assemble at low temperature into hierarchically arranged, highly flexible ceramic-based papers. The papers’ mechanical properties are found to be strongly influenced by the amount of the integrated GO phase. Nanoindentation tests reveal an out-of-plane decrease in Young’s modulus with increasing GO content. Furthermore, nanotensile tests reveal that the ceramic-based papers with 0.5 wt% GO show superior in-plane mechanical performance, compared to papers with higher GO contents as well as to pristine V2O5 and GO papers. Remarkably, the performance is preserved even after stretching the composite material for 100 nanotensile test cycles. The good mechanical stability and unique combination of stiffness and flexibility enable this material to memorize its micro- and macroscopic shape after repeated mechanical deformations. These findings provide useful guidelines for the development of bioinspired, multifunctional systems whose hierarchical structure imparts tailored mechanical properties and cycling stability, which is essential for applications such as actuators or flexible electrodes for advanced energy storage.

14 citations

Journal ArticleDOI
TL;DR: In this paper, an exact solvable quantum field theory of dislocation for both edge and screw dislocations in an isotropic medium by introducing a new quasiparticle "dislon" is presented.
Abstract: Crystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and quantitative quantum-mechanical theory of dislocation remains undiscovered for decades. Here we present an exactly solvable quantum field theory of dislocation, for both edge and screw dislocations in an isotropic medium by introducing a new quasiparticle "dislon". With this approach, the electron-dislocation relaxation time is studied from electron self-energy which can be reduced to classical results. Moreover, a fundamentally new type of electron energy Friedel oscillation near dislocation core is predicted, which can occur even with single electron at present. For the first time, the effect of dislocations on materials' non-mechanical properties can be studied at a full quantum field theoretical level.

14 citations


Cited by
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
Sumio Iijima1
01 Nov 1991-Nature
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Abstract: THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes. On 7 November 1991, Sumio Iijima announced in Nature the preparation of nanometre-size, needle-like tubes of carbon — now familiar as 'nanotubes'. Used in microelectronic circuitry and microscopy, and as a tool to test quantum mechanics and model biological systems, nanotubes seem to have unlimited potential.

39,086 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations