scispace - formally typeset
Search or ask a question
Author

Mildred Shapley Matthews

Bio: Mildred Shapley Matthews is an academic researcher from University of Michigan. The author has contributed to research in topics: Solar System & Star formation. The author has an hindex of 11, co-authored 12 publications receiving 2980 citations.

Papers
More filters
Book
01 Jan 1994
TL;DR: Hazards Due to Comets and Asteroids (HAD) as mentioned in this paper is a collection of more than one hundred scientists from around the world, who draw on observational and theoretical research to focus on the technical problems related to all aspects of dealing with these hazards: searching for and identifying hazardous comets and asteroids; describing their statistics and characteristics; intercepting and altering the orbits of dangerous objects; and applying existent technologies rocket boosters, rendezvous and soft-landing techniques, instrumentation to such missions.
Abstract: In 1993, the U.S. Department of Defense declassified information dealing with frequent explosions in the upper atmosphere caused by meteoric impact. It is estimated that impacts have occurred of a magnitude equivalent to the atomic bomb detonated at Hiroshima. Not all such space voyagers meet their end in the atmosphere, however; huge craters attest to the bombardment of earth over millions of years, and a major impact may have resulted in the extinction of dinosaurs. An impact in Siberia near the beginning of this century proves that such events are not confined to geologic time. "Hazards Due to Comets and Asteroids" marks a significant step in the attempt to come to grips with the threats posed by such phenomena. It brings together more than one hundred scientists from around the world, who draw on observational and theoretical research to focus on the technical problems related to all aspects of dealing with these hazards: searching for and identifying hazardous comets and asteroids; describing their statistics and characteristics; intercepting and altering the orbits of dangerous objects; and applying existent technologies rocket boosters, rendezvous and soft-landing techniques, instrumentation to such missions. The book considers defensive options for diverting or disrupting an approaching body, including solar sails, kinetic-energy impacts, nuclear explosives, robotic mass drivers, and various propulsion systems. A cataclysmic impact posing a threat to life on Earth is a possibility that tomorrow's technology is capable of averting. This book examines in depth the reality of the threat and proposes practical measures that can be initiated now should we ever need to deal with it."

461 citations

Book
01 Dec 1991
TL;DR: In this article, observational data derived from the world's largest solar telescopes are correlated with theoretical discussions in nuclear and atomic physics by contributors representing a wide range of interests in solar research, focusing both on processes occurring at the interior of the Sun and on complicated features observed at its surface.
Abstract: In this volume, observational data derived from the world's largest solar telescopes are correlated with theoretical discussions in nuclear and atomic physics by contributors representing a wide range of interests in solar research. Focusing both on processes occurring at the interior of the Sun and on complicated features observed at its surface, these chapters offer both basic explanations of solar phenomena and an overview of present controversies. Three areas of research covered in the volume are of particular interest: the pulsating nature of the Sun and how these oscillations facilitate the measurement of temperature, density, and pressure of its interior, thus revealing the depth of the surface convection zone and the composition of central regions; confirmation of the predicted flux of neutrinos via solar oscillation observations, yielding new speculations that they are produced at the solar centre but are converted to unobservable forms in passing through the Sun as they escape; and the interpretation of magnetic surface structures, based on both groundbased and space observations, in terms of chromosphere heating.

459 citations

Book
01 May 1989
TL;DR: In this paper, the authors discuss the origin and evolution of planet and satellite atmospheres, the chemistry of interstellar gas and grains, planetary accretion, cometary composition, the inventories of asteroid volatiles, key similarities and differences among the terrestrial planets' atmospheric compositions, and planets" atmospheric escape and water loss.
Abstract: The present volume on the origin and evolution of planet and satellite atmospheres discusses the chemistry of interstellar gas and grains, planetary accretion, cometary composition, the inventories of asteroid volatiles, key similarities and differences among the terrestrial planets' atmospheric compositions, and planets' atmospheric escape and water loss Also discussed are planetary atmosphere-planetary interior evolutionary coupling, the atmospheric composition of the outer planets, the structure and composition of giant planet interiors, the tenuous atmosphere of Io, the sources of the atmospheres of the outer solar system's satellites, the present state and chemical evolution of the Titan, Triton, and Pluto atmospheres, and the thermal structure and heat balance of the outer planets

446 citations

01 Jan 1994
TL;DR: Hazards Due to Comets and Asteroids (HAD) as mentioned in this paper is a collection of more than one hundred scientists from around the world, who draw on observational and theoretical research to focus on the technical problems related to all aspects of dealing with these hazards: searching for and identifying hazardous comets and asteroids; describing their statistics and characteristics; intercepting and altering the orbits of dangerous objects; and applying existent technologies rocket boosters, rendezvous and soft-landing techniques, instrumentation to such missions.
Abstract: In 1993, the U.S. Department of Defense declassified information dealing with frequent explosions in the upper atmosphere caused by meteoric impact. It is estimated that impacts have occurred of a magnitude equivalent to the atomic bomb detonated at Hiroshima. Not all such space voyagers meet their end in the atmosphere, however; huge craters attest to the bombardment of earth over millions of years, and a major impact may have resulted in the extinction of dinosaurs. An impact in Siberia near the beginning of this century proves that such events are not confined to geologic time. "Hazards Due to Comets and Asteroids" marks a significant step in the attempt to come to grips with the threats posed by such phenomena. It brings together more than one hundred scientists from around the world, who draw on observational and theoretical research to focus on the technical problems related to all aspects of dealing with these hazards: searching for and identifying hazardous comets and asteroids; describing their statistics and characteristics; intercepting and altering the orbits of dangerous objects; and applying existent technologies rocket boosters, rendezvous and soft-landing techniques, instrumentation to such missions. The book considers defensive options for diverting or disrupting an approaching body, including solar sails, kinetic-energy impacts, nuclear explosives, robotic mass drivers, and various propulsion systems. A cataclysmic impact posing a threat to life on Earth is a possibility that tomorrow's technology is capable of averting. This book examines in depth the reality of the threat and proposes practical measures that can be initiated now should we ever need to deal with it."

437 citations

Book
01 Jan 1988
TL;DR: In this article, the authors discuss topics in the source regions for meteorites, their secondary processing, irradiation effects on meteorite, solar system chronology, early solar system, the chemistry of chondrites and the early solar systems, magnetic fields in the early star systems, the nature of the chondrules, micrometeorites, inhomogeneity of the nebula, survival of presolar material in meteorites and nucleosynthesis.
Abstract: The present work discusses topics in the source regions for meteorites, their secondary processing, irradiation effects on meteorites, solar system chronology, the early solar system, the chemistry of chondrites and the early solar system, magnetic fields in the early solar system, the nature of chondrules, micrometeorites, inhomogeneity of the nebula, the survival of presolar material in meteorites, nucleosynthesis, and the relationship between extinct radionuclides and nucleocosmochronology Attention is given to igneous activity in the early solar system, principles of radiometric aging, the cosmochemical classification of the elements, highly labile elements, the potential significance of pristine material, the astrophysical implications of presolar grains, boundary conditions for the origin of the solar system, and iodine-xenon dating

328 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, solar photospheric and meteoritic CI chondrite abundance determinations for all elements are summarized and the best currently available photosphere abundances are selected, including the meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron, phosphorous, sulfur).
Abstract: Solar photospheric and meteoritic CI chondrite abundance determinations for all elements are summarized and the best currently available photospheric abundances are selected. The meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron, phosphorous, sulfur) are discussed in detail. The photospheric abundances give mass fractions of hydrogen (X ¼ 0:7491), helium (Y ¼ 0:2377), and heavy elements (Z ¼ 0:0133), leading to Z=X ¼ 0:0177, which is lower than the widely used Z=X ¼ 0:0245 from previous compilations. Recent results from standard solar models considering helium and heavy-element settling imply that photospheric abundances and mass fractions are not equal to protosolar abundances (representative of solar system abundances). Protosolar elemental and isotopic abundances are derived from photospheric abundances by considering settling effects. Derived protosolar mass fractions are X0 ¼ 0:7110, Y0 ¼ 0:2741, and Z0 ¼ 0:0149. The solar system and photospheric abundance tables are used to compute self-consistent sets of condensation temperatures for all elements. Subject headings: astrochemistry — meteors, meteoroids — solar system: formation — Sun: abundances — Sun: photosphere

4,305 citations

Journal ArticleDOI
23 Nov 1995-Nature
TL;DR: The presence of a Jupiter-mass companion to the star 51 Pegasi is inferred from observations of periodic variations in the star's radial velocity as discussed by the authors, which would be well inside the orbit of Mercury in our Solar System.
Abstract: The presence of a Jupiter-mass companion to the star 51 Pegasi is inferred from observations of periodic variations in the star's radial velocity. The companion lies only about eight million kilometres from the star, which would be well inside the orbit of Mercury in our Solar System. This object might be a gas-giant planet that has migrated to this location through orbital evolution, or from the radiative stripping of a brown dwarf.

3,957 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the theory necessary for interpreting cosmogenic nuclide data, reviews estimates of parameters, describes strategies and practical considerations in field applications, and assesses sources of error in interpreting Cosmogenic Nuclide measurements.

1,758 citations

Journal ArticleDOI
01 Dec 2006-Science
TL;DR: A substantial increase in hazards related to heavy rain is expected over central India in the future as a result of rising global surface temperature and significant rising trends in the frequency and the magnitude of extreme rain events are shown.
Abstract: Against a backdrop of rising global surface temperature, the stability of the Indian monsoon rainfall over the past century has been a puzzle By using a daily rainfall data set, we show (i) significant rising trends in the frequency and the magnitude of extreme rain events and (ii) a significant decreasing trend in the frequency of moderate events over central India during the monsoon seasons from 1951 to 2000 The seasonal mean rainfall does not show a significant trend, because the contribution from increasing heavy events is offset by decreasing moderate events A substantial increase in hazards related to heavy rain is expected over central India in the future

1,634 citations

Journal ArticleDOI
TL;DR: The Mars Orbiter Laser Altimeter (MOLA) has been used to measure the topography, surface roughness, and 1.064-μm reflectivity of Mars and the heights of volatile and dust clouds as mentioned in this paper.
Abstract: The Mars Orbiter Laser Altimeter (MOLA), an instrument on the Mars Global Surveyor spacecraft, has measured the topography, surface roughness, and 1.064-μm reflectivity of Mars and the heights of volatile and dust clouds. This paper discusses the function of the MOLA instrument and the acquisition, processing, and correction of observations to produce global data sets. The altimeter measurements have been converted to both gridded and spherical harmonic models for the topography and shape of Mars that have vertical and radial accuracies of ~1 m with respect to the planet's center of mass. The current global topographic grid has a resolution of 1/64° in latitude × 1/32° in longitude (1 × 2 km^2 at the equator). Reconstruction of the locations of incident laser pulses on the Martian surface appears to be at the 100-m spatial accuracy level and results in 2 orders of magnitude improvement in the global geodetic grid of Mars. Global maps of optical pulse width indicative of 100-m-scale surface roughness and 1.064-μm reflectivity with an accuracy of 5% have also been obtained.

1,542 citations