scispace - formally typeset
Search or ask a question
Author

Miles Herkenham

Bio: Miles Herkenham is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Receptor & Cannabinoid receptor. The author has an hindex of 80, co-authored 141 publications receiving 27854 citations. Previous affiliations of Miles Herkenham include St. Joseph's Hospital and Medical Center & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: It is considered premature to rename cannabinoid receptors after an endogenous agonist as is recommended by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification, because pharmacological evidence for the existence of additional types of cannabinoid receptor is emerging and other kinds of supporting evidence are still lacking.
Abstract: Two types of cannabinoid receptor have been discovered so far, CB(1) (2.1: CBD:1:CB1:), cloned in 1990, and CB(2) (2.1:CBD:2:CB2:), cloned in 1993. Distinction between these receptors is based on differences in their predicted amino acid sequence, signaling mechanisms, tissue distribution, and sensitivity to certain potent agonists and antagonists that show marked selectivity for one or the other receptor type. Cannabinoid receptors CB(1) and CB(2) exhibit 48% amino acid sequence identity. Both receptor types are coupled through G proteins to adenylyl cyclase and mitogen-activated protein kinase. CB(1) receptors are also coupled through G proteins to several types of calcium and potassium channels. These receptors exist primarily on central and peripheral neurons, one of their functions being to inhibit neurotransmitter release. Indeed, endogenous CB(1) agonists probably serve as retrograde synaptic messengers. CB(2) receptors are present mainly on immune cells. Such cells also express CB(1) receptors, albeit to a lesser extent, with both receptor types exerting a broad spectrum of immune effects that includes modulation of cytokine release. Of several endogenous agonists for cannabinoid receptors identified thus far, the most notable are arachidonoylethanolamide, 2-arachidonoylglycerol, and 2-arachidonylglyceryl ether. It is unclear whether these eicosanoid molecules are the only, or primary, endogenous agonists. Hence, we consider it premature to rename cannabinoid receptors after an endogenous agonist as is recommended by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. Although pharmacological evidence for the existence of additional types of cannabinoid receptor is emerging, other kinds of supporting evidence are still lacking.

2,619 citations

Journal ArticleDOI
TL;DR: The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in the in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience.
Abstract: [3H]CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

2,179 citations

Journal ArticleDOI
TL;DR: The results suggest that the presently characterized cannabinoid receptor mediates physiological and behavioral effects of natural and synthetic cannabinoids, because it is strongly coupled to guanine nucleotide regulatory proteins and is discretely localized to cortical, basal ganglia, and cerebellar structures involved with cognition and movement.
Abstract: A potent, synthetic cannabinoid was radiolabeled and used to characterize and precisely localize cannabinoid receptors in slide-mounted sections of rat brain and pituitary. Assay conditions for 3H-CP55,940 binding in Tris-HCl buffer with 5% BSA were optimized, association and dissociation rate constants determined, and the equilibrium dissociation constant (Kd) calculated (21 nM by liquid scintillation counting, 5.2 nM by quantitative autoradiography). The results of competition studies, using several synthetic cannabinoids, add to prior data showing enantioselectivity of binding and correlation of in vitro potencies with potencies in biological assays of cannabinoid actions. Inhibition of binding by guanine nucleotides was selective and profound: Nonhydrolyzable analogs of GTP and GDP inhibited binding by greater than 90%, and GMP and the nonhydrolyzable ATP analog showed no inhibition. Autoradiography showed great heterogeneity of binding in patterns of labeling that closely conform to cytoarchitectural and functional domains. Very dense 3H-CP55,940 binding is localized to the basal ganglia (lateral caudate-putamen, globus pallidus, entopeduncular nucleus, substantia nigra pars reticulata), cerebellar molecular layer, innermost layers of the olfactory bulb, and portions of the hippocampal formation (CA3 and dentate gyrus molecular layer). Moderately dense binding is found throughout the remaining forebrain. Sparse binding characterizes the brain stem and spinal cord. Densitometry confirmed the quantitative heterogeneity of cannabinoid receptors (10 nM 3H-CP55,940 binding ranged in density from 6.3 pmol/mg protein in the substantia nigra pars reticulata to 0.15 pmol/mg protein in the anterior lobe of the pituitary). The results suggest that the presently characterized cannabinoid receptor mediates physiological and behavioral effects of natural and synthetic cannabinoids, because it is strongly coupled to guanine nucleotide regulatory proteins and is discretely localized to cortical, basal ganglia, and cerebellar structures involved with cognition and movement.

2,070 citations

Journal ArticleDOI
TL;DR: Most, but not all, CNS effects of Delta9-THC are mediated by the CB1 receptor, which accounts for the abuse potential of cannabis, while other effects such as analgesia suggest potential medicinal applications.
Abstract: Δ9-Tetrahydrocannabinol (Δ9-THC), the major psychoactive ingredient in preparations of Cannabis sativa (marijuana, hashish), elicits central nervous system (CNS) responses, including cognitive alterations and euphoria. These responses account for the abuse potential of cannabis, while other effects such as analgesia suggest potential medicinal applications. To study the role of the major known target of cannabinoids in the CNS, the CB1 cannabinoid receptor, we have produced a mouse strain with a disrupted CB1 gene. CB1 knockout mice appeared healthy and fertile, but they had a significantly increased mortality rate. They also displayed reduced locomotor activity, increased ring catalepsy, and hypoalgesia in hotplate and formalin tests. Δ9-THC-induced ring-catalepsy, hypomobility, and hypothermia were completely absent in CB1 mutant mice. In contrast, we still found Δ9-THC-induced analgesia in the tail-flick test and other behavioral (licking of the abdomen) and physiological (diarrhea) responses after Δ9-THC administration. Thus, most, but not all, CNS effects of Δ9-THC are mediated by the CB1 receptor.

1,041 citations

Journal ArticleDOI
TL;DR: The efferent connections of the medial (MHb) and lateral (LHb) habenular nuclei in the rat were demonstrated autoradiographically following small injections of tritiated amino acids localized within various parts of the habenational complex.
Abstract: The efferent connections of the medial (MHb) and lateral (LHb) habenular nuclei in the rat were demonstrated autoradiographically following small injections of tritiated amino acids localized within various parts of the habenular complex. Comparison of individual cases led to the following conclusions.

833 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The basal ganglia serve primarily to integrate diverse inputs from the entire cerebral cortex and to "funnel" these influences, via the ventrolateral thalamus, to the motor cortex.
Abstract: Information about the basal ganglia has accumulated at a prodigious pace over the past decade, necessitating major revisions in our concepts of the structural and functional organization of these nuclei. From earlier data it had appeared that the basal ganglia served primarily to integrate diverse inputs from the entire cerebral cortex and to "funnel" these influences, via the ventrolateral thalamus, to the motor cortex (Allen & Tsukahara 1974, Evarts & Thach 1969, Kemp & Powell 1971). In particular, the basal

8,111 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: In response to a peripheral infection, innate immune cells produce pro-inflammatory cytokines that act on the brain to cause sickness behaviour, which can lead to an exacerbation of sickness and the development of symptoms of depression in vulnerable individuals.
Abstract: In response to a peripheral infection, innate immune cells produce pro-inflammatory cytokines that act on the brain to cause sickness behaviour. When activation of the peripheral immune system continues unabated, such as during systemic infections, cancer or autoimmune diseases, the ensuing immune signalling to the brain can lead to an exacerbation of sickness and the development of symptoms of depression in vulnerable individuals. These phenomena might account for the increased prevalence of clinical depression in physically ill people. Inflammation is therefore an important biological event that might increase the risk of major depressive episodes, much like the more traditional psychosocial factors.

5,665 citations

Journal ArticleDOI
18 Dec 1992-Science
TL;DR: In this article, an arachidonylethanthanolamide (anandamide) was identified in a screen for endogenous ligands for the cannabinoid receptor and its structure was determined by mass spectrometry and nuclear magnetic resonance spectroscopy and confirmed by synthesis.
Abstract: Arachidonylethanolamide, an arachidonic acid derivative in porcine brain, was identified in a screen for endogenous ligands for the cannabinoid receptor. The structure of this compound, which has been named "anandamide," was determined by mass spectrometry and nuclear magnetic resonance spectroscopy and was confirmed by synthesis. Anandamide inhibited the specific binding of a radiolabeled cannabinoid probe to synaptosomal membranes in a manner typical of competitive ligands and produced a concentration-dependent inhibition of the electrically evoked twitch response to the mouse vas deferens, a characteristic effect of psychotropic cannabinoids. These properties suggest that anandamide may function as a natural ligand for the cannabinoid receptor.

5,283 citations

Journal ArticleDOI
TL;DR: A model in which specific types of basal ganglia disorders are associated with changes in the function of subpopulations of striatal projection neurons is proposed, which suggests that the activity of sub Populations of Striatal projections neurons is differentially regulated by striatal afferents and that different striatal projections may mediate different aspects of motor control.

5,094 citations