scispace - formally typeset
Search or ask a question
Author

Milo M. Backus

Other affiliations: Texas Instruments
Bio: Milo M. Backus is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Reflection (physics) & Synthetic seismogram. The author has an hindex of 18, co-authored 61 publications receiving 2040 citations. Previous affiliations of Milo M. Backus include Texas Instruments.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that a seismic event does not necessarily follow an impedance boundary defined by a geological time surface, and instead, the position of a filtered impedance boundary relative to the seismic time surface may vary with seismic frequency because of inadequate resolution of seismic data and the en echelon or ramp arrangement of impedance anomalies of sandstone.
Abstract: Two-dimensional, fenced 2-D, and 3-D isosurface displays of some realistic 3-D seismic models built in the lower Miocene Powderhorn Field, Calhoun County, Texas, demonstrate that a seismic event does not necessarily follow an impedance boundary defined by a geological time surface. Instead, the position of a filtered impedance boundary relative to the geological time surface may vary with seismic frequency because of inadequate resolution of seismic data and to the en echelon or ramp arrangement of impedance anomalies of sandstone. Except for some relatively time-parallel seismic events, the correlation error of event picking is large enough to distort or even miss the majority of the target zone on stratal slices. In some cases, reflections from sandstone bodies in different depositional units interfere to form a single event and, in one instance, an event tying as many as six depositional units (interbedded sandy and shaly layers) over 50 m was observed. Frequency independence is a necessary condition for selecting time-parallel reference events. Instead of event picking, phantom mapping between such reference events is a better technique for picking stratal slices, making it possible to map detailed depositional facies within reservoir sequences routinely and reliably from 3-D seismic data.

231 citations

Journal ArticleDOI
TL;DR: In this article, a new technique was developed which makes it possible to process a seismic record-section in such a way that all seismic events with dips in a given range are preserved with no alteration over a wide frequency band, while all earthquakes with dips outside the specified range are uniformly and severely attenuated.
Abstract: A new technique has been developed which makes it possible to process a seismic record‐section in such a way that all seismic events with dips in a given range are preserved with no alteration over a wide frequency band, while all seismic events with dips outside the specified range are uniformly and severely attenuated. By applying this process to a noisy record‐section, a record‐section may be obtained which has all events within a specified dip range perfectly preserved, and very high‐velocity noise essentially eliminated, a result which is impossible by simple wave‐number filtering or conventional array usage. In structurally complex areas where several steeply dipping events interfere, the technique may be applied to separate the events with different dips. In areas where a normal‐moveout contrast exists between primaries and multiples, the technique may be used for wide‐band multiple attenuation. By application of a “rotating Pie‐Slice” to micro‐spread noise data, seismic noise may be separated on t...

167 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the water layer is treated as a linear filtering mechanism, and it is suggested that most apparent water reverberation records probably contain some approximate subsurface structural information, even in their present form.
Abstract: In offshore shooting the validity of previously recorded seismic data has been severely limited by multiple reflections within the water layer. The magnitude of this problem is dependent on the thickness and the nature of the boundaries of the water layer. The effect of the water layer is treated as a linear filtering mechanism, and it is suggested that most apparent water reverberation records probably contain some approximate subsurface structural information, even in their present form. The use of inverse filtering techniques for the removal or attenuation of the water reverberation effect is discussed. Examples show the application of the technique to conventional magnetically recorded offshore data. It has been found that the effectiveness of the method is strongly dependent on the instrumental parameters used in the recording of the original data.

130 citations

Journal ArticleDOI
TL;DR: In this article, the benefits of using 90°-phase wavelets in stratigraphic and lithologic interpretation of seismically thin beds are discussed, in a two-part article, in which seismic models of Ricker wavelets with selected phases are constructed to assess interpretability of composite waveforms in increasingly complex geologic settings.
Abstract: We discuss, in a two-part article, the benefits of 90°-phase wavelets in stratigraphic and lithologic interpretation of seismically thin beds. In Part 1, seismic models of Ricker wavelets with selected phases are constructed to assess interpretability of composite waveforms in increasingly complex geologic settings. Although superior for single surface and thick-layer interpretation, zero-phase seismic data are not optimal for interpreting beds thinner than a wavelength because their antisymmetric thin-bed responses tie to the reflectivity series rather than to impedance logs. Nonsymmetrical wavelets (e.g., minimum-phase wavelets) are generally not recommended for interpretation because their asymmetric composite waveforms have large side lobes. Integrated zero-phase traces are also less desirable because they lose high-frequency components in the integration process. However, the application of 90°-phase data consistently improves seismic interpretability. The unique symmetry of 90°-phase thin-bed response eliminates the dual polarity of thin-bed responses, resulting in better imagery of thin-bed geometry, impedance profiles, lithology, and stratigraphy. Less amplitude distortion and less stratigraphy-independent, thin-bed interference lead to more accurate acoustic impedance estimation from amplitude data and a better tie of seismic traces to lithology-indicative wireline logs. Field data applications are presented in part 2 of this article.

105 citations


Cited by
More filters
MonographDOI
09 Jan 2020
TL;DR: The third edition of the reference book as discussed by the authors has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results, and highlights applications in unconventional reservoirs, including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates.
Abstract: Responding to the latest developments in rock physics research, this popular reference book has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results. It brings together the vast literature from the field to address the relationships between geophysical observations and the underlying physical properties of Earth materials - including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates. This third edition includes expanded coverage of topics such as effective medium models, viscoelasticity, attenuation, anisotropy, electrical-elastic cross relations, and highlights applications in unconventional reservoirs. Appendices have been enhanced with new materials and properties, while worked examples (supplemented by online datasets and MATLAB® codes) enable readers to implement the workflows and models in practice. This significantly revised edition will continue to be the go-to reference for students and researchers interested in rock physics, near-surface geophysics, seismology, and professionals in the oil and gas industries.

1,387 citations

Journal ArticleDOI
TL;DR: In this paper, a Gabor expansion involving basic wavelets with a constant time duration/mean period ratio was proposed for normal incidence propagation of plane waves through perfectly elastic multilayered media.
Abstract: From experimental studies in digital processing of seismic reflection data, geophysicists know that a seismic signal does vary in amplitude, shape, frequency and phase, versus propagation time To enhance the resolution of the seismic reflection method, we must investigate these variations in more detail. We present quantitative results of theoretical studies on propagation of plane waves for normal incidence, through perfectly elastic multilayered media. As wavelet shapes, we use zero-phase cosine wavelets modulated by a Gaussian envelope and the corresponding complex wavelets. A finite set of such wavelets, for an appropriate sampling of the frequency domain, may be taken as the basic wavelets for a Gabor expansion of any signal or trace in a two-dimensional (2-D) domain (time and frequency). We can then compute the wave propagation using complex functions and thereby obtain quantitative results including energy and phase of the propagating signals. These results appear as complex 2-D functions of time and frequency, i.e., as “instantaneous frequency spectra. ’ ’ Choosing a constant sampling rate on the logarithmic scale in the frequency domain leads to an appropriate sampling method for phase preservation of the complex signals or traces. For this purpose, we developed a Gabor expansion involving basic wavelets with a constant time duration/mean period ratio. For layered media, as found in sedimentary basins,

1,135 citations

Journal ArticleDOI
TL;DR: A directionally oriented 2-D filter bank with the property that the individual channels may be critically sampled without loss of information is introduced and it is shown that these filter bank outputs may be maximally decimated to achieve a minimum sample representation in a way that permits the original signal to be exactly reconstructed.
Abstract: The authors introduce a directionally oriented 2-D filter bank with the property that the individual channels may be critically sampled without loss of information. The passband regions of the component filters are wedge-shaped and thus provide directional information. It is shown that these filter bank outputs may be maximally decimated to achieve a minimum sample representation in a way that permits the original signal to be exactly reconstructed. The authors discuss the theory for directional decomposition and reconstruction. In addition, implementation issues are addressed where realizations based on both recursive and nonrecursive filters are considered. >

911 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental principles for calculating velocity spectra displays are outlined and examples are included which demonstrate the depth and detail of geological information which may be obtained from the interpretation of such displays.
Abstract: Multifold ground coverage by seismic techniques such as the common reflection point method provides a multiplicity of wave travel path information which allows direct determination of root‐mean‐square velocities associated with such paths. Hyperbolic searches for semblance among appropriately gathered arrays of traces form the basis upon which velocities are estimated. Measured semblances are presented as a velocity spectral display. Interpretation of this information can give velocities with meaningful accuracy for primary as well as multiple events. In addition, the velocity data can help correctly label events. This paper outlines the fundamental principles for calculating velocity spectra displays. Examples are included which demonstrate the depth and detail of geological information which may be obtained from the interpretation of such displays.

853 citations

Book
01 Feb 2005
TL;DR: In this paper, the authors present a statistical rock physics approach combining rock physics, information theory, and statistics to reduce uncertainty in seismic data. But they do not discuss the use of statistical methods for quantitative seismic interpretation.
Abstract: Preface 1. Introduction to rock physics 2. Rock physics interpretation of texture, lithology and compaction 3. Statistical rock physics: combining rock physics, information theory, and statistics to reduce uncertainty 4. Common techniques for quantitative seismic interpretation 5. Case studies: lithology and pore-fluid prediction from seismic data 6. Workflows and guide lines 7. Hands-on References Index.

677 citations