scispace - formally typeset
Search or ask a question
Author

Milton J. Kiefel

Bio: Milton J. Kiefel is an academic researcher from Griffith University. The author has contributed to research in topics: Sialic acid & N-Acetylneuraminic acid. The author has an hindex of 26, co-authored 84 publications receiving 2251 citations. Previous affiliations of Milton J. Kiefel include University of Nottingham & University of St Andrews.


Papers
More filters
Journal ArticleDOI
09 Aug 2016-Toxins
TL;DR: It has been postulated that, given its chemical properties, PCN is able to readily cross biological membranes, however studies have yet to be undertaken to evaluate this effect, and this review highlights the possible manifestations of PCN exposure.
Abstract: Pyocyanin has recently emerged as an important virulence factor produced by Pseudomonas aeruginosa. The redox-active tricyclic zwitterion has been shown to have a number of potential effects on various organ systems in vitro, including the respiratory, cardiovascular, urological, and central nervous systems. It has been shown that a large number of the effects to these systems are via the formation of reactive oxygen species. The limitations of studies are, to date, focused on the localized effect of the release of pyocyanin (PCN). It has been postulated that, given its chemical properties, PCN is able to readily cross biological membranes, however studies have yet to be undertaken to evaluate this effect. This review highlights the possible manifestations of PCN exposure; however, most studies to date are in vitro. Further high quality in vivo studies are needed to fully assess the physiological manifestations of PCN exposure on the various body systems.

230 citations

Journal ArticleDOI
01 Sep 2020-ACS Nano
TL;DR: This work synthesized a robust and redox-active 2D metal-organic Frameworks (MOFs) [Cu3(C6S6)]n, namely Cu-BHT, which has a highly conjugated structure, affording a high electronic conductivity and would provide a practical strategy for the development of high-power energy storage materials.
Abstract: Redox-active organic cathode materials have drawn growing attention because of the broad availability of raw materials, eco-friendliness, scalable production, and diverse structural flexibility. However, organic materials commonly suffer from fragile stability in organic solvents, poor electrochemical stability in charge/discharge processes, and insufficient electrical conductivity. To address these issues, using Cu(II) salt and benzenehexathiolate (BHT) as the precursors, we synthesized a robust and redox-active 2D metal-organic framework (MOF), [Cu3(C6S6)]n, namely, Cu-BHT. The Cu-BHT MOFs have a highly conjugated structure, affording a high electronic conductivity of 231 S cm-1, which could further be increased upon lithiation in lithium-ion battery (LIB) applications. A reversible four-electron reaction reveals the Li storage mechanism of the Cu-BHT for a theoretical capacity of 236 mAh g-1. The as-prepared Cu-BHT cathode delivers an excellent reversible capacity of 175 mAh g-1 with ultralow capacity deterioration (0.048% per cycle) upon 500 cycles at a high current density of 300 mA g-1. Therefore, we believe this work would provide a practical strategy for the development of high-power energy storage materials.

176 citations

Journal ArticleDOI
TL;DR: Newcastle disease virus (NDV) HN contained a pliable sialic acid recognition site that could take two states, a binding state and a catalytic state, and three different crystal forms of NDV HN now reveal identical tetrameric arrangements of HN monomers, perhaps indicative of the tetramer association found on the viral surface.
Abstract: Paramyxoviruses are the leading cause of respiratory disease in children. Several paramyxoviruses possess a surface glycoprotein, the hemagglutinin-neuraminidase (HN), that is involved in attachment to sialic acid receptors, promotion of fusion, and removal of sialic acid from infected cells and progeny virions. Previously we showed that Newcastle disease virus (NDV) HN contained a pliable sialic acid recognition site that could take two states, a binding state and a catalytic state. Here we present evidence for a second sialic acid binding site at the dimer interface of HN and present a model for its involvement in cell fusion. Three different crystal forms of NDV HN now reveal identical tetrameric arrangements of HN monomers, perhaps indicative of the tetramer association found on the viral surface.

157 citations

Journal ArticleDOI
TL;DR: The observation that the inhibitor 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en) was bound at the catalytic site supports the notion that VCNA can produce its own inhibitor and has been further confirmed by 1H NMR analysis.

155 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: Using R-Hydroxy Stannanes as a Model for a Methylenation Reaction and Conclusions and Future Prospects are presented.
Abstract: 6.4. Polyynes 3123 6.5. Using R-Hydroxy Stannanes 3124 6.6. Using the Hurtley Reaction 3124 6.7. Using a Methylenation Reaction 3125 7. Conclusions and Future Prospects 3125 8. Uncommon Abbreviations 3125 9. Acknowledgments 3125 10. Note Added in Proof 3125 11. References 3126 * Authorstowhomcorrespondenceshouldbeaddressed(evano@chimie.uvsq.fr, nicolas.blanchard@uha.fr). † Université de Versailles Saint Quentin en Yvelines. ‡ Université de Haute-Alsace. Chem. Rev. 2008, 108, 3054–3131 3054

1,789 citations

Journal ArticleDOI
TL;DR: It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences, as they are no different from other major macromolecular building blocks of life, simply more rapidly evolving and complex.
Abstract: Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.

1,588 citations