scispace - formally typeset
Search or ask a question
Author

Mimi Paller

Bio: Mimi Paller is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Scatterometer & Radar. The author has an hindex of 3, co-authored 6 publications receiving 4112 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The Shuttle Radar Topography Mission produced the most complete, highest-resolution digital elevation model of the Earth, using dual radar antennas to acquire interferometric radar data, processed to digital topographic data at 1 arc sec resolution.
Abstract: [1] The Shuttle Radar Topography Mission produced the most complete, highest-resolution digital elevation model of the Earth. The project was a joint endeavor of NASA, the National Geospatial-Intelligence Agency, and the German and Italian Space Agencies and flew in February 2000. It used dual radar antennas to acquire interferometric radar data, processed to digital topographic data at 1 arc sec resolution. Details of the development, flight operations, data processing, and products are provided for users of this revolutionary data set.

5,019 citations

Proceedings ArticleDOI
29 Oct 2015
TL;DR: InSAR Topography And Spectroscopy (VERITAS) mission is a proposed mission to Venus designed to obtain high resolution imagery and topography of the surface using an X-band radar configured as a single pass radar interferometer (called VISAR) coupled with a multispectral NIR emissivity mapping sensor as mentioned in this paper.
Abstract: Magellan, a NASA mission to Venus in the early 1990s, mapped nearly the entire surface of Venus with an S-band (12 cm) synthetic aperture radar and microwave radiometer and made radar altimeter measurements of the topography, [1]. These measurements revolutionized our understanding of the geomorphology, geology and geophysical processes that have shaped the evolution of the surface of Venus. However, the lack of finer resolution imagery and topography of the surface than that obtained by the Magellan mission has hampered the definitive answer to key questions concerning the processes and evolution of the surface of Venus. The Venus Emissivity, Radio Science, InSAR Topography And Spectroscopy (VERITAS) Mission is a proposed mission to Venus designed to obtain high resolution imagery and topography of the surface using an X-band radar configured as a single pass radar interferometer (called VISAR) coupled with a multispectral NIR emissivity mapping sensor.

13 citations

Proceedings ArticleDOI
04 May 2009
TL;DR: In this paper, a spaceborne combination radiometer-scatterometer in L-band for measuring ocean surface salinity is presented, where active and passive thermal control was utilized as well as RF self calibration.
Abstract: In this paper, we present the architecture and design of the Aquarius instrument: a spaceborne combination radiometer-scatterometer in L-band, for measuring ocean surface salinity In order to achieve the unprecedented measurement stability of 01 Kelvin for the radiometer, the Scatterometer (for correction of the sea surface roughness) is required to have a calibrated stability of 01 dB Active and passive thermal control was utilized as well as RF self calibration Novel test techniques were also developed to verify the stability requirement was met

4 citations

Proceedings ArticleDOI
04 May 2009
TL;DR: Topics include the development of flight-grade hardware aboard the scatterometer for radio frequency interference (RFI) detection and mitigation, and analog/digital electronics design techniques that reduce system noise and yield highly linear power detection over a wide dynamic range.
Abstract: The upcoming Aquarius sea-surface salinity mission has tight requirements on backscatter measurement accuracy and stability at L-band frequencies (1.26 GHz). These requirements have driven the development of new capabilities in the radar's backend detector electronics, which are the focus of this paper. Topics include the development of flight-grade hardware aboard the scatterometer for radio frequency interference (RFI) detection and mitigation, and analog/digital electronics design techniques that reduce system noise and yield highly linear power detection over a wide dynamic range. We also summarize the approach taken to test the scatterometer's processing and control functions at the level of the integrated Aquarius flight instrument, and present some recent results from the integrated testing campaign.

3 citations

Proceedings ArticleDOI
23 Jul 2007
TL;DR: Two new aspects of the flight electronics that contribute toward the overall stability of Aquarius radar will be discussed in this paper: a high- rate radar timing mode for verifying performance on the ground, and an onboard processor for flagging echoes corrupted by radio-frequency interference (RFI).
Abstract: The Aquarius mission requirement for 0.1 dB scatterometer measurement stability has driven the radar's control and processing hardware design. Two new aspects of the flight electronics that contribute toward the overall stability will be discussed in this paper: 1) a high- rate radar timing mode for verifying performance on the ground, and 2) an onboard processor for flagging echoes corrupted by radio-frequency interference (RFI).

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors created a new dataset of spatially interpolated monthly climate data for global land areas at a very high spatial resolution (approximately 1 km2), including monthly temperature (minimum, maximum and average), precipitation, solar radiation, vapour pressure and wind speed, aggregated across a target temporal range of 1970-2000, using data from between 9000 and 60,000 weather stations.
Abstract: We created a new dataset of spatially interpolated monthly climate data for global land areas at a very high spatial resolution (approximately 1 km2). We included monthly temperature (minimum, maximum and average), precipitation, solar radiation, vapour pressure and wind speed, aggregated across a target temporal range of 1970–2000, using data from between 9000 and 60 000 weather stations. Weather station data were interpolated using thin-plate splines with covariates including elevation, distance to the coast and three satellite-derived covariates: maximum and minimum land surface temperature as well as cloud cover, obtained with the MODIS satellite platform. Interpolation was done for 23 regions of varying size depending on station density. Satellite data improved prediction accuracy for temperature variables 5–15% (0.07–0.17 °C), particularly for areas with a low station density, although prediction error remained high in such regions for all climate variables. Contributions of satellite covariates were mostly negligible for the other variables, although their importance varied by region. In contrast to the common approach to use a single model formulation for the entire world, we constructed the final product by selecting the best performing model for each region and variable. Global cross-validation correlations were ≥ 0.99 for temperature and humidity, 0.86 for precipitation and 0.76 for wind speed. The fact that most of our climate surface estimates were only marginally improved by use of satellite covariates highlights the importance having a dense, high-quality network of climate station data.

7,558 citations

Journal ArticleDOI
TL;DR: An overview of the GMES Sentinel-2 mission including a technical system concept overview, image quality, Level 1 data processing and operational applications is provided.

2,517 citations

Journal ArticleDOI
TL;DR: This work analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types, and found a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height.
Abstract: Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

1,750 citations

Journal ArticleDOI
TL;DR: The Global Multi-Resolution Topography (GMRT) as discussed by the authors is a collection of bathymetry tiles with digital elevations and shaded relief imagery spanning nine magnification doublings from pole to pole.
Abstract: [1] Seafloor bathymetric data acquired with modern swath echo sounders provide coverage for only a small fraction of the global seabed yet are of high value for studies of the dynamic processes of seafloor volcanism, tectonics, mass wasting, and sediment transport that create and shape the undersea landscape. A new method for compilation of global seafloor bathymetry that preserves the native resolution of swath sonars is presented. The Global Multi-Resolution Topography synthesis consists of a hierarchy of tiles with digital elevations and shaded relief imagery spanning nine magnification doublings from pole to pole (http://www.marine-geo.org/portals/gmrt). The compilation is updated and accessible as surveys are contributed, edited, and added to the tiles. Access to the bathymetry tiles is via Web services and with WMS-enabled client applications such as GeoMapApp®, Virtual Ocean, NASA World Wind®, and Google Earth®.

1,445 citations

Journal ArticleDOI
TL;DR: A 30-arc second resolution global topography/bathymetry grid (SRTM30_PLUS) has been developed from a wide variety of data sources as discussed by the authors, which is based on a new satellite-gravity model where the gravity-to-topography ratio is calibrated using 298 million edited soundings.
Abstract: A new 30-arc second resolution global topography/bathymetry grid (SRTM30_PLUS) has been developed from a wide variety of data sources. Land and ice topography comes from the SRTM30 and ICESat topography, respectively. Ocean bathymetry is based on a new satellite-gravity model where the gravity-to-topography ratio is calibrated using 298 million edited soundings. The main contribution of this study is the compilation and editing of the raw soundings, which come from NOAA, individual scientists, SIO, NGA, JAMSTEC, IFREMER, GEBCO, and NAVOCEANO. The gridded bathymetry is available for ftp download in the same format as the 33 tiles of SRTM30 topography. There are 33 matching tiles of source identification number to convey the provenance of every grid cell. The raw sounding data, converted to a simple common format, are also available for ftp download.

1,255 citations