scispace - formally typeset
Search or ask a question
Author

Min Su Han

Bio: Min Su Han is an academic researcher from Gwangju Institute of Science and Technology. The author has contributed to research in topics: Chemistry & Colloidal gold. The author has an hindex of 29, co-authored 120 publications receiving 6593 citations. Previous affiliations of Min Su Han include Pohang University of Science and Technology & Chung-Ang University.


Papers
More filters
Journal ArticleDOI
19 May 2006-Science
TL;DR: By chemically tailoring the density of DNA bound to the surface of gold nanoparticles, a tunable gene knockdown was demonstrated and it was demonstrated that gold nanoparticle-oligonucleotide complexes are nontoxic to the cells under the conditions studied.
Abstract: We describe the use of gold nanoparticle-oligonucleotide complexes as intracellular gene regulation agents for the control of protein expression in cells. These oligonucleotide-modified nanoparticles have affinity constants for complementary nucleic acids that are higher than their unmodified oligonucleotide counterparts, are less susceptible to degradation by nuclease activity, exhibit greater than 99% cellular uptake, can introduce oligonucleotides at a higher effective concentration than conventional transfection agents, and are nontoxic to the cells under the conditions studied. By chemically tailoring the density of DNA bound to the surface of gold nanoparticles, we demonstrated a tunable gene knockdown.

1,870 citations

Journal ArticleDOI
TL;DR: A highly selective and sensitive colorimetric detection method for Hg that relies on thymidine–Hg–thymidine coordination chemistry and complementary DNA–Au NPs with deliberately designed T–T mismatches is presented.
Abstract: Mercury is a widespread pollutant with distinct toxicological profiles, and it exists in a variety of different forms (metallic, ionic, and as part of organic and inorganic salts and complexes). Solvated mercuric ion (Hg), one of the most stable inorganic forms of mercury, is a caustic and carcinogenic material with high cellular toxicity. The most common organic source of mercury, methyl mercury, can accumulate in the human body through the food chain and cause serious and permanent damage to the brain with both acute and chronic toxicity. Methyl mercury is generated by microbial biomethylation in aquatic sediments from water-soluble mercuric ion (Hg). Therefore, routine detection of Hg is central to the environmental monitoring of rivers and larger bodies of water and for evaluating the safety of aquatically derived food supplies. Several methods for the detection of Hg, based upon organic fluorophores or chromophores, semiconductor nanocrystals, cyclic voltammetry, polymeric materials, proteins, and microcantilevers, have been developed. Colorimetric methods, in particular, are extremely attractive because they can be easily read out with the naked eye, in some cases at the point of use. Although there are now several chromophoric colorimetric sensors for Hg, all of them are either limited with respect to sensitivity (current limit of detection 1 mm) and selectivity, kinetically unstable, or incompatible with aqueous environments. Recently, DNA-functionalized gold nanoparticles (DNA– Au NPs) have been used in a variety of forms for the detection of proteins, oligonucleotides, certain metal ions, and other small molecules. DNA–Au NPs have high extinction coefficients (3–5 orders of magnitude higher than those of organic dye molecules) and unique distancedependent optical properties that can be chemically programmed through the use of specific DNA interconnects, which allows one, in certain cases, to detect targets of interest through colorimetric means. Moreover, these structures, when hybridized to complementary particles, exhibit extremely sharp melting transitions, which have been used to enhance the selectivity of detection systems based upon them. By using such an approach, one can typically detect nucleic acid targets in the low nanomolar to high picomolar target concentration range in colorimetric format. The ability to use such particles to detect Hg in the nanomolar concentration range in colorimetric format would be a significant advance, especially when one considers that commercial systems for detecting Hg rely on cumbersome inductively coupled plasma approaches that are not suitable for point-of-use applications. Herein, we present a highly selective and sensitive colorimetric detection method for Hg that relies on thymidine–Hg–thymidine coordination chemistry and complementary DNA–Au NPs with deliberately designed T–T mismatches. When two complementary DNA–Au NPs are combined, they form DNA-linked aggregates that can dissociate reversibly with a concomitant purple-to-red color change. 28] For our novel colorimetric Hg assay, however, we prepared two types of Au NPs (designated as probe A and probe B, see the Supporting Information), each functionalized with different thiolated-DNA sequences (probe A: 5’HS-C10-A10-T-A103’, probe B: 5’HS-C10-T10-T-T103’), which are complementary except for a single thymidine–thymidine mismatch (shown in bold; Scheme 1). Importantly, these particles also form stable aggregates and exhibit the characteristic sharp melting transitions (full width at half maximum< 1 8C) associated with aggregates formed from perfectly complementary particles, but with a lower melting temperature Tm. [17, 18] Since it is known that Hg will coordinate selectively to the bases that make up a T–T mismatch, we hypothesized that Hg would

1,295 citations

Journal ArticleDOI
TL;DR: A highly sensitive and selective colorimetric detection method for cysteine based upon oligonucleotide-functionalized gold nanoparticle probes that contain strategically placed thymidine-thymidine (T-T) mismatches complexed with Hg2+.
Abstract: We report the development of a highly sensitive and selective colorimetric detection method for cysteine based upon oligonucleotide-functionalized gold nanoparticle probes that contain strategically placed thymidine-thymidine (T-T) mismatches complexed with Hg2+. This assay relies upon the distance-dependent optical properties of gold nanoparticles, the sharp melting transition of oligonucleotide-linked nanoparticle aggregates, and the very selective coordination of Hg2+ with cysteine. The concentration of cysteine can be determined by monitoring with the naked eye or a UV-vis spectrometer the temperature at which the purple-to-red color change associated with aggregate dissociation takes place. This assay does not utilize organic cosolvents, enzymatic reactions, light-sensitive dye molecules, lengthy protocols, or sophisticated instrumentation thereby overcoming some of the limitations of more conventional methods.

463 citations

Journal ArticleDOI
TL;DR: A selective kanamycin-binding single-strand DNA (ssDNA) aptamer (TGGGGGTTGAGGCTAAGCCGA) was discovered through in vitro selection using affinity chromatography with kanamyzin-immobilized sepharose beads and was detected down to 25 nM by the gold nanoparticle-based colorimetric method.

370 citations

Journal ArticleDOI
TL;DR: The development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents that can be triggered at the EPA limit for this ion in drinking water.
Abstract: We report the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes modified with aniline and naphthalene moieties. The assay works on the concept of a kinetic end point and can be triggered at the EPA limit for this ion in drinking water (highlighted in red, μM). This rapid and simple assay could be useful for on-site water quality monitoring.

313 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The advent of AuNP as a sensory element provided a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.
Abstract: Detection of chemical and biological agents plays a fundamental role in biomedical, forensic and environmental sciences1–4 as well as in anti bioterrorism applications.5–7 The development of highly sensitive, cost effective, miniature sensors is therefore in high demand which requires advanced technology coupled with fundamental knowledge in chemistry, biology and material sciences.8–13 In general, sensors feature two functional components: a recognition element to provide selective/specific binding with the target analytes and a transducer component for signaling the binding event. An efficient sensor relies heavily on these two essential components for the recognition process in terms of response time, signal to noise (S/N) ratio, selectivity and limits of detection (LOD).14,15 Therefore, designing sensors with higher efficacy depends on the development of novel materials to improve both the recognition and transduction processes. Nanomaterials feature unique physicochemical properties that can be of great utility in creating new recognition and transduction processes for chemical and biological sensors15–27 as well as improving the S/N ratio by miniaturization of the sensor elements.28 Gold nanoparticles (AuNPs) possess distinct physical and chemical attributes that make them excellent scaffolds for the fabrication of novel chemical and biological sensors (Figure 1).29–36 First, AuNPs can be synthesized in a straightforward manner and can be made highly stable. Second, they possess unique optoelectronic properties. Third, they provide high surface-to-volume ratio with excellent biocompatibility using appropriate ligands.30 Fourth, these properties of AuNPs can be readily tuned varying their size, shape and the surrounding chemical environment. For example, the binding event between recognition element and the analyte can alter physicochemical properties of transducer AuNPs, such as plasmon resonance absorption, conductivity, redox behavior, etc. that in turn can generate a detectable response signal. Finally, AuNPs offer a suitable platform for multi-functionalization with a wide range of organic or biological ligands for the selective binding and detection of small molecules and biological targets.30–32,36 Each of these attributes of AuNPs has allowed researchers to develop novel sensing strategies with improved sensitivity, stability and selectivity. In the last decade of research, the advent of AuNP as a sensory element provided us a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.37 Figure 1 Physical properties of AuNPs and schematic illustration of an AuNP-based detection system. In this current review, we have highlighted the several synthetic routes and properties of AuNPs that make them excellent probes for different sensing strategies. Furthermore, we will discuss various sensing strategies and major advances in the last two decades of research utilizing AuNPs in the detection of variety of target analytes including metal ions, organic molecules, proteins, nucleic acids, and microorganisms.

3,879 citations

Journal ArticleDOI
TL;DR: It is argued that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us.
Abstract: Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of ‘gilding the (nanomedicinal) lily’, but that a new ‘Golden Age’ of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references).

2,712 citations

Journal ArticleDOI
TL;DR: This critical review provides an overall survey of the basic concepts and up-to-date literature results concerning the very promising use of gold nanoparticles (AuNPs) for medicinal applications.
Abstract: This critical review provides an overall survey of the basic concepts and up-to-date literature results concerning the very promising use of gold nanoparticles (AuNPs) for medicinal applications. It includes AuNP synthesis, assembly and conjugation with biological and biocompatible ligands, plasmon-based labeling and imaging, optical and electrochemical sensing, diagnostics, therapy (drug vectorization and DNA/gene delivery) for various diseases, in particular cancer (also Alzheimer, HIV, hepatitis, tuberculosis, arthritis, diabetes) and the essential in vitro and in vivo toxicity. It will interest the medicine, chemistry, spectroscopy, biochemistry, biophysics and nanoscience communities (211 references).

2,499 citations

Journal ArticleDOI
TL;DR: In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision through a strong interaction between incident light and free electrons in the nanostructure.
Abstract: Coinage metals, such as Au, Ag, and Cu, have been important materials throughout history.1 While in ancient cultures they were admired primarily for their ability to reflect light, their applications have become far more sophisticated with our increased understanding and control of the atomic world. Today, these metals are widely used in electronics, catalysis, and as structural materials, but when they are fashioned into structures with nanometer-sized dimensions, they also become enablers for a completely different set of applications that involve light. These new applications go far beyond merely reflecting light, and have renewed our interest in maneuvering the interactions between metals and light in a field known as plasmonics.2–6 In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision. These applications are made possible through a strong interaction between incident light and free electrons in the nanostructures. With a tight control over the nanostructures in terms of size and shape, light can be effectively manipulated and controlled with unprecedented accuracy.3,7 While many new technologies stand to be realized from plasmonics, with notable examples including superlenses,8 invisible cloaks,9 and quantum computing,10,11 conventional technologies like microprocessors and photovoltaic devices could also be made significantly faster and more efficient with the integration of plasmonic nanostructures.12–15 Of the metals, Ag has probably played the most important role in the development of plasmonics, and its unique properties make it well-suited for most of the next-generation plasmonic technologies.16–18 1.1. What is Plasmonics? Plasmonics is related to the localization, guiding, and manipulation of electromagnetic waves beyond the diffraction limit and down to the nanometer length scale.4,6 The key component of plasmonics is a metal, because it supports surface plasmon polariton modes (indicated as surface plasmons or SPs throughout this review), which are electromagnetic waves coupled to the collective oscillations of free electrons in the metal. While there are a rich variety of plasmonic metal nanostructures, they can be differentiated based on the plasmonic modes they support: localized surface plasmons (LSPs) or propagating surface plasmons (PSPs).5,19 In LSPs, the time-varying electric field associated with the light (Eo) exerts a force on the gas of negatively charged electrons in the conduction band of the metal and drives them to oscillate collectively. At a certain excitation frequency (w), this oscillation will be in resonance with the incident light, resulting in a strong oscillation of the surface electrons, commonly known as a localized surface plasmon resonance (LSPR) mode.20 This phenomenon is illustrated in Figure 1A. Structures that support LSPRs experience a uniform Eo when excited by light as their dimensions are much smaller than the wavelength of the light. Figure 1 Schematic illustration of the two types of plasmonic nanostructures discussed in this article as excited by the electric field (Eo) of incident light with wavevector (k). In (A) the nanostructure is smaller than the wavelength of light and the free electrons ... In contrast, PSPs are supported by structures that have at least one dimension that approaches the excitation wavelength, as shown in Figure 1B.4 In this case, the Eo is not uniform across the structure and other effects must be considered. In such a structure, like a nanowire for example, SPs propagate back and forth between the ends of the structure. This can be described as a Fabry-Perot resonator with resonance condition l=nλsp, where l is the length of the nanowire, n is an integer, and λsp is the wavelength of the PSP mode.21,22 Reflection from the ends of the structure must also be considered, which can change the phase and resonant length. Propagation lengths can be in the tens of micrometers (for nanowires) and the PSP waves can be manipulated by controlling the geometrical parameters of the structure.23

2,421 citations