scispace - formally typeset
Search or ask a question
Author

Min Tan

Bio: Min Tan is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Adipogenesis & Peroxisome. The author has an hindex of 4, co-authored 4 publications receiving 82 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Dietary supplementation with plasmalogens increased mitochondrial copy number, improved mitochondrial function, and rescued thermogenesis in Pex16-AKO mice, supporting a surprising interaction between peroxisomes and mitochondria regulating mitochondrial dynamics and thermogenesis.
Abstract: Peroxisomes perform essential functions in lipid metabolism, including fatty acid oxidation and plasmalogen synthesis. Here, we describe a role for peroxisomal lipid metabolism in mitochondrial dynamics in brown and beige adipocytes. Adipose tissue peroxisomal biogenesis was induced in response to cold exposure through activation of the thermogenic coregulator PRDM16. Adipose-specific knockout of the peroxisomal biogenesis factor Pex16 (Pex16-AKO) in mice impaired cold tolerance, decreased energy expenditure, and increased diet-induced obesity. Pex16 deficiency blocked cold-induced mitochondrial fission, decreased mitochondrial copy number, and caused mitochondrial dysfunction. Adipose-specific knockout of the peroxisomal β-oxidation enzyme acyl-CoA oxidase 1 (Acox1-AKO) was not sufficient to affect adiposity, thermogenesis, or mitochondrial copy number, but knockdown of the plasmalogen synthetic enzyme glyceronephosphate O-acyltransferase (GNPAT) recapitulated the effects of Pex16 inactivation on mitochondrial morphology and function. Plasmalogens are present in mitochondria and decreased with Pex16 inactivation. Dietary supplementation with plasmalogens increased mitochondrial copy number, improved mitochondrial function, and rescued thermogenesis in Pex16-AKO mice. These findings support a surprising interaction between peroxisomes and mitochondria regulating mitochondrial dynamics and thermogenesis.

81 citations

Journal ArticleDOI
TL;DR: Peroxisome-derived acetyl-CoA is identified as a key metabolic regulator of autophagy that controls hepatic lipid homeostasis that restricts autophagic degradation of lipids.

74 citations

Journal ArticleDOI
TL;DR: PexRAP is identified as an important regulator of adipose tissue remodeling and interacts with PPARγ, as well asPRDM16, a critical transcriptional regulator of thermogenesis, and disrupts the PRDM16-PPARγ complex, providing a potential mechanism for PexR AP-mediated inhibition of adipocyte browning.

24 citations

Journal ArticleDOI
TL;DR: It is demonstrated that MED19 is essential for adipogenesis and maintenance of white adipose tissue (WAT) by mediating peroxisome proliferator-activated receptor gamma (PPARγ) transcriptional activity and identified as a crucial facilitator of PPARγ-mediated gene expression in adipOSE tissue.

16 citations


Cited by
More filters
Journal ArticleDOI
University of Michigan1, Cornell University2, University of Pennsylvania3, University of Massachusetts Medical School4, Baylor College of Medicine5, University of Naples Federico II6, Spanish National Research Council7, Complutense University of Madrid8, New York University9, Boston Children's Hospital10, University of Rome Tor Vergata11, NewYork–Presbyterian Hospital12, University of Pittsburgh13, French Institute of Health and Medical Research14, University of Paris15, National University of Cuyo16, Albert Einstein College of Medicine17, University of New Mexico18, Goethe University Frankfurt19, Weizmann Institute of Science20, University of Turku21, Sapienza University of Rome22, Virginia Commonwealth University23, St. Jude Children's Research Hospital24, Discovery Institute25, University of Copenhagen26, University of Tromsø27, Eötvös Loránd University28, Merck & Co.29, University of Freiburg30, Babraham Institute31, University of Adelaide32, University of South Australia33, University of Oviedo34, University of Chicago35, University of Graz36, National Institutes of Health37, City University of New York38, Queens College39, University of Tokyo40, University of Zurich41, Austrian Academy of Sciences42, University of British Columbia43, University of California, San Francisco44, Russian Academy of Sciences45, University Medical Center Groningen46, University of Cambridge47, University of Glasgow48, Rutgers University49, University of Padua50, Kazan Federal University51, University of Bern52, University of Oxford53, University of Oslo54, Oslo University Hospital55, Foundation for Research & Technology – Hellas56, University of Crete57, Francis Crick Institute58, Osaka University59, Chinese Academy of Sciences60, Harvard University61, Icahn School of Medicine at Mount Sinai62, Shanghai Jiao Tong University63, Karolinska Institutet64
TL;DR: In this paper, preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Abstract: Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.

365 citations

Journal ArticleDOI
TL;DR: Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation as discussed by the authors.
Abstract: Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby improving insulin sensitivity and glucose metabolism. PPARs also exert anti-atherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates improve insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.

166 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes, highlighting findings from cancer models but also discuss other examples of mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders and aging.
Abstract: Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.

133 citations

Journal ArticleDOI
TL;DR: The dynamic components and precise regulatory mechanisms of the PPARγ-cofactors complexes in adipocytes, as well as perspectives in treating metabolic diseases via specific PParγ signaling, are discussed.
Abstract: Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-dependent transcription factor highly expressed in adipocytes, is a master regulator of adipogenesis and lipid storage, a central player in thermogenesis and an active modulator of lipid metabolism and insulin sensitivity. As a nuclear receptor governing numerous target genes, its specific signaling transduction relies on elegant transcriptional and post-translational regulations. Notably, in response to different metabolic stimuli, PPARγ recruits various cofactors and forms distinct transcriptional complexes that change dynamically in components and epigenetic modification to ensure specific signal transduction. Clinically, PPARγ activation via its full agonists, thiazolidinediones, has been shown to improve insulin sensitivity and induce browning of white fat, while undesirably induce weight gain, visceral obesity and other adverse effects. Thus, deciphering the combinatorial interactions between PPARγ and its transcriptional partners and their preferential regulatory network in the processes of development, function and senescence of adipocytes would provide us the molecular basis for developing novel partial agonists that promote benefits of PPARγ signaling without detrimental side effects. In this review, we discuss the dynamic components and precise regulatory mechanisms of the PPARγ-cofactors complexes in adipocytes, as well as perspectives in treating metabolic diseases via specific PPARγ signaling.

94 citations

Journal ArticleDOI
TL;DR: Among this wave of therapeutic mechanisms targeting the underlying pathogenesis of NASH, the hormone fibroblast growth factor 21 (FGF21) holds considerable promise; it decreases liver fat and hepatocyte injury while suppressing inflammation and fibrosis across multiple preclinical studies.
Abstract: The rising global prevalence of obesity, metabolic syndrome, and type 2 diabetes has driven a sharp increase in non-alcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in the liver. Approximately one-sixth of the NAFLD population progresses to non-alcoholic steatohepatitis (NASH) with liver inflammation, hepatocyte injury and cell death, liver fibrosis and cirrhosis. NASH is one of the leading causes of liver transplant, and an increasingly common cause of hepatocellular carcinoma (HCC), underscoring the need for intervention. The complex pathophysiology of NASH, and a predicted prevalence of 3-5% of the adult population worldwide, has prompted drug development programs aimed at multiple targets across all stages of the disease. Currently, there are no approved therapeutics. Liver-related morbidity and mortality are highest in more advanced fibrotic NASH, which has led to an early focus on anti-fibrotic approaches to prevent progression to cirrhosis and HCC. Due to limited clinical efficacy, anti-fibrotic approaches have been superseded by mechanisms that target the underlying driver of NASH pathogenesis, namely steatosis, which drives hepatocyte injury and downstream inflammation and fibrosis. Among this wave of therapeutic mechanisms targeting the underlying pathogenesis of NASH, the hormone fibroblast growth factor 21 (FGF21) holds considerable promise; it decreases liver fat and hepatocyte injury while suppressing inflammation and fibrosis across multiple preclinical studies. In this review, we summarize preclinical and clinical data from studies with FGF21 and FGF21 analogs, in the context of the pathophysiology of NASH and underlying metabolic diseases.

93 citations