scispace - formally typeset
Search or ask a question
Author

Min Wei

Bio: Min Wei is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Cancer & Cancer cell. The author has an hindex of 8, co-authored 13 publications receiving 228 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Findings suggest that miR-409-3p may function as a novel tumor suppressor in GC and its anti-oncogenic activity may involve the direct targeting and inhibition of PHF10.

75 citations

Journal ArticleDOI
TL;DR: The results identify Stat6 as an important cell differentiation regulatory protein functioning, at least in part, by interacting with Sp1 to activate the p21 and p27 gene promoters in breast cancer cells.
Abstract: Background The signal transducer and activator of transcription 6 (Stat6), a member of the family of DNA-binding proteins, has been identified as a critical cell differentiation modulator in breast cancer cells As of yet, the mechanisms underlying this function have remained largely unknown To further elucidate the role of Stat6 in breast cancer development, we investigated the consequences of exogenous Stat6 expression

37 citations

Journal ArticleDOI
TL;DR: It is suggested that MPS-1 regulates cell invasiveness and migration partially through ITGB4 and that M PS-1/ITGB4 signaling axis may serve as therapeutic targets in the treatment of gastric cancer.
Abstract: MPS-1 (metallopanstimulin-1), also known as ribosomal protein S27, was overexpressed in gastric cancer cells. However, how MPS-1 contributes to gastric carcinogenesis has not been well characterized. Here, we show that high expression of MPS-1 was observed in gastric cancer tissues and associated with gastric cancer cell metastasis. Alteration of MPS-1 expression regulates invasion and migration of gastric cancer cells both in vitro and in vivo. Furthermore, by using Signal-Net and cluster analyses of microarray data we identified integrin β4 (ITGB4) as a downstream target of MPS-1 that mediates its effects on cell metastasis. Knockdown of MPS-1 expression in gastric cancer cells led to significant reduction of ITGB4 expression at both the RNA and protein levels. Mechanically, we found that overexpression of ITGB4 in MPS-1 knockdown cells largely recovers the ability of invasion and migration. Conversely, knockdown of ITGB4 partially reduced cell invading/migrating ability induced by MPS-1 overexpression. Moreover, MPS-1 and ITGB4 expressions are positively correlated in gastric cancer cell lines and tissues. Finally, the survival analyses show that the expression of MPS-1 and ITGB4 is associated with poor outcomes in gastric cancer patients. Collectively, our findings suggest that MPS-1 regulates cell invasiveness and migration partially through ITGB4 and that MPS-1/ITGB4 signaling axis may serve as therapeutic targets in the treatment of gastric cancer.

34 citations

Journal ArticleDOI
TL;DR: A novel pathway, the Mps‐1/NF‐κB/Gadd45β signal pathway, played an important role in MPS‐1 knockdown‐induced apoptosis of gastric cancer cells.
Abstract: The ribosomal protein S27 (metallopanstimulin-1, MPS-1) has been reported to be a multifunctional protein, with increased expression in a number of cancers. We reported previously that MPS-1 was highly expressed in human gastric cancer. Knockdown of MPS-1 led to spontaneous apoptosis and repressed proliferation of human gastric cancer cells in vitro and in vivo. However, how does MPS-1 regulate these processes is unclear. Here we performed microarray and pathway analyses to investigate possible pathways involved in MPS-1 knockdown-induced apoptosis in gastric cancer cells. Our results showed that knockdown of MPS-1 inhibited NF-κB activity by reducing phosphorylation of p65 at Ser536 and IκBα at Ser32, inhibiting NF-κB nuclear translocation, and down-regulating its DNA binding activity. Furthermore, data-mining the Gene-Regulatory-Network revealed that growth arrest DNA damage inducible gene 45β (Gadd45β), a direct NF-κB target gene, played a critical role in MPS-1 knockdown-induced apoptosis. Over-expression of Gadd45β inhibited MPS-1 knockdown-induced apoptosis via inhibition of JNK phosphorylation. Taken together, these data revealed a novel pathway, the MPS-1/NF-κB/Gadd45β signal pathway, played an important role in MPS-1 knockdown-induced apoptosis of gastric cancer cells. This study sheds new light on the role of MPS-1/NF-κB in apoptosis and the possible use of MPS-1 targeting strategy in the treatment of gastric cancer.

28 citations

Journal ArticleDOI
TL;DR: Quantitative real-time PCR and immunochemistry assay results revealed that LOX mRNA was increased in gastric cancer tissues compared with the adjacent normal mucosa, and Cox regression analysis revealed that positive expression of LOX was an independent prognostic marker for survival in patients with Gastric cancer.
Abstract: Lysyl oxidase (LOX) initiates the enzymatic stage of collagen and elastin cross-linking. It also has intracellular functions involved in the regulation of cell differentiation, motility/migration and gene transcription. Aberrant expression of the LOX gene has been reported in multiple tumors. However, the correlation of its expression with clinicopathological parameters and its prognostic significance in gastric cancer remains largely unknown. In order to address this problem, total RNA of paired tissue samples (n=10) and a tissue microarray containing 161 paired tissues from patients with gastric cancers at different stages were collected. Quantitative real-time PCR and immunochemistry assay were conducted to investigate the expression of LOX. Based on the results, LOX mRNA was increased in gastric cancer tissues compared with the adjacent normal mucosa. Immunohistochemical detection revealed that expression of LOX was associated with depth of tumor invasion (P<0.05), lymph node status (P<0.05), TNM stage (P<0.05) and survival (P<0.05). Cox regression analysis revealed that positive expression of LOX (P=0.026) was an independent prognostic marker for survival in patients with gastric cancer.

21 citations


Cited by
More filters
Journal Article

663 citations

01 Jan 2009
TL;DR: In this article, a review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
Abstract: MicroRNAs (miRNAs) are endogenous ∼23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.

646 citations

Journal ArticleDOI
Xiang Zhou1, Wenjuan Liao1, Jun-Ming Liao1, Peng Liao1, Hua Lu1 
TL;DR: The current understanding of how ribosomal stress provokes the accumulation of ribosome-free Ribosomal proteins, as well as the ribosomesome-independent functions of ribOSomal proteins in tumorigenesis, immune signaling, and development are overviewed.
Abstract: Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.

484 citations

Journal ArticleDOI
TL;DR: A more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target, and the evidence suggesting that Sp1 is highly regulated by post‐translational modifications that positively and negatively affect the activity of Sp 1 on a wide array of genes is reviewed.
Abstract: For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.

392 citations

Journal ArticleDOI
TL;DR: The recent advances in several forefronts of RP research are reviewed, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases.
Abstract: Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.

163 citations