scispace - formally typeset
Search or ask a question
Author

Minah Park

Other affiliations: University Health System
Bio: Minah Park is an academic researcher from National University of Singapore. The author has contributed to research in topics: Population & Exit strategy. The author has an hindex of 5, co-authored 9 publications receiving 1165 citations. Previous affiliations of Minah Park include University Health System.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors adapted an influenza epidemic simulation model to estimate the likelihood of human-to-human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a simulated Singaporean population.
Abstract: Summary Background Since the coronavirus disease 2019 outbreak began in the Chinese city of Wuhan on Dec 31, 2019, 68 imported cases and 175 locally acquired infections have been reported in Singapore. We aimed to investigate options for early intervention in Singapore should local containment (eg, preventing disease spread through contact tracing efforts) be unsuccessful. Methods We adapted an influenza epidemic simulation model to estimate the likelihood of human-to-human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a simulated Singaporean population. Using this model, we estimated the cumulative number of SARS-CoV-2 infections at 80 days, after detection of 100 cases of community transmission, under three infectivity scenarios (basic reproduction number [R0] of 1·5, 2·0, or 2·5) and assuming 7·5% of infections are asymptomatic. We first ran the model assuming no intervention was in place (baseline scenario), and then assessed the effect of four intervention scenarios compared with a baseline scenario on the size and progression of the outbreak for each R0 value. These scenarios included isolation measures for infected individuals and quarantining of family members (hereafter referred to as quarantine); quarantine plus school closure; quarantine plus workplace distancing; and quarantine, school closure, and workplace distancing (hereafter referred to as the combined intervention). We also did sensitivity analyses by altering the asymptomatic fraction of infections (22·7%, 30·0%, 40·0%, and 50·0%) to compare outbreak sizes under the same control measures. Findings For the baseline scenario, when R0 was 1·5, the median cumulative number of infections at day 80 was 279 000 (IQR 245 000–320 000), corresponding to 7·4% (IQR 6·5–8·5) of the resident population of Singapore. The median number of infections increased with higher infectivity: 727 000 cases (670 000–776 000) when R0 was 2·0, corresponding to 19·3% (17·8–20·6) of the Singaporean population, and 1 207 000 cases (1 164 000–1 249 000) when R0 was 2·5, corresponding to 32% (30·9–33·1) of the Singaporean population. Compared with the baseline scenario, the combined intervention was the most effective, reducing the estimated median number of infections by 99·3% (IQR 92·6–99·9) when R0 was 1·5, by 93·0% (81·5–99·7) when R0 was 2·0, and by 78·2% (59·0 −94·4) when R0 was 2·5. Assuming increasing asymptomatic fractions up to 50·0%, up to 277 000 infections were estimated to occur at day 80 with the combined intervention relative to 1800 for the baseline at R0 of 1·5. Interpretation Implementing the combined intervention of quarantining infected individuals and their family members, workplace distancing, and school closure once community transmission has been detected could substantially reduce the number of SARS-CoV-2 infections. We therefore recommend immediate deployment of this strategy if local secondary transmission is confirmed within Singapore. However, quarantine and workplace distancing should be prioritised over school closure because at this early stage, symptomatic children have higher withdrawal rates from school than do symptomatic adults from work. At higher asymptomatic proportions, intervention effectiveness might be substantially reduced requiring the need for effective case management and treatments, and preventive measures such as vaccines. Funding Singapore Ministry of Health, Singapore Population Health Improvement Centre.

598 citations

Journal ArticleDOI
TL;DR: A systematic review of the published literature and preprints on the coronavirus disease (COVID-19) outbreak following predefined eligibility criteria found that there is an urgent need for rigorous research focusing on the mitigation efforts to minimize the impact on society.
Abstract: As the novel coronavirus (SARS-CoV-2) continues to spread rapidly across the globe, we aimed to identify and summarize the existing evidence on epidemiological characteristics of SARS-CoV-2 and the effectiveness of control measures to inform policymakers and leaders in formulating management guidelines, and to provide directions for future research. We conducted a systematic review of the published literature and preprints on the coronavirus disease (COVID-19) outbreak following predefined eligibility criteria. Of 317 research articles generated from our initial search on PubMed and preprint archives on 21 February 2020, 41 met our inclusion criteria and were included in the review. Current evidence suggests that it takes about 3-7 days for the epidemic to double in size. Of 21 estimates for the basic reproduction number ranging from 1.9 to 6.5, 13 were between 2.0 and 3.0. The incubation period was estimated to be 4-6 days, whereas the serial interval was estimated to be 4-8 days. Though the true case fatality risk is yet unknown, current model-based estimates ranged from 0.3% to 1.4% for outside China. There is an urgent need for rigorous research focusing on the mitigation efforts to minimize the impact on society.

457 citations

Journal Article
07 May 2021-Elements
TL;DR: An influenza epidemic simulation model was adapted to estimate the likelihood of human-to-human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a simulated Singaporean population and the combined intervention was the most effective, reducing the estimated median number of infections.
Abstract: Summary Background Since the coronavirus disease 2019 outbreak began in the Chinese city of Wuhan on Dec 31, 2019, 68 imported cases and 175 locally acquired infections have been reported in Singapore. We aimed to investigate options for early intervention in Singapore should local containment (eg, preventing disease spread through contact tracing efforts) be unsuccessful. Methods We adapted an influenza epidemic simulation model to estimate the likelihood of human-to-human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a simulated Singaporean population. Using this model, we estimated the cumulative number of SARS-CoV-2 infections at 80 days, after detection of 100 cases of community transmission, under three infectivity scenarios (basic reproduction number [R0] of 1·5, 2·0, or 2·5) and assuming 7·5% of infections are asymptomatic. We first ran the model assuming no intervention was in place (baseline scenario), and then assessed the effect of four intervention scenarios compared with a baseline scenario on the size and progression of the outbreak for each R0 value. These scenarios included isolation measures for infected individuals and quarantining of family members (hereafter referred to as quarantine); quarantine plus school closure; quarantine plus workplace distancing; and quarantine, school closure, and workplace distancing (hereafter referred to as the combined intervention). We also did sensitivity analyses by altering the asymptomatic fraction of infections (22·7%, 30·0%, 40·0%, and 50·0%) to compare outbreak sizes under the same control measures. Findings For the baseline scenario, when R0 was 1·5, the median cumulative number of infections at day 80 was 279 000 (IQR 245 000–320 000), corresponding to 7·4% (IQR 6·5–8·5) of the resident population of Singapore. The median number of infections increased with higher infectivity: 727 000 cases (670 000–776 000) when R0 was 2·0, corresponding to 19·3% (17·8–20·6) of the Singaporean population, and 1 207 000 cases (1 164 000–1 249 000) when R0 was 2·5, corresponding to 32% (30·9–33·1) of the Singaporean population. Compared with the baseline scenario, the combined intervention was the most effective, reducing the estimated median number of infections by 99·3% (IQR 92·6–99·9) when R0 was 1·5, by 93·0% (81·5–99·7) when R0 was 2·0, and by 78·2% (59·0 −94·4) when R0 was 2·5. Assuming increasing asymptomatic fractions up to 50·0%, up to 277 000 infections were estimated to occur at day 80 with the combined intervention relative to 1800 for the baseline at R0 of 1·5. Interpretation Implementing the combined intervention of quarantining infected individuals and their family members, workplace distancing, and school closure once community transmission has been detected could substantially reduce the number of SARS-CoV-2 infections. We therefore recommend immediate deployment of this strategy if local secondary transmission is confirmed within Singapore. However, quarantine and workplace distancing should be prioritised over school closure because at this early stage, symptomatic children have higher withdrawal rates from school than do symptomatic adults from work. At higher asymptomatic proportions, intervention effectiveness might be substantially reduced requiring the need for effective case management and treatments, and preventive measures such as vaccines. Funding Singapore Ministry of Health, Singapore Population Health Improvement Centre.

317 citations

Journal ArticleDOI
01 Aug 2020
TL;DR: The impact of lockdown and exit strategies in Singapore for immediate planning is explored and gradual release exit strategies are critical to maintain epidemic suppression under a new normal.
Abstract: Background With at least 94 countries undergoing or exiting lockdowns for contact suppression to control the COVID-19 outbreak, sustainable and public health-driven exit strategies are required. Here we explore the impact of lockdown and exit strategies in Singapore for immediate planning. Methods We use an agent-based model to examine the impacts of epidemic control over 480 days. A limited control baseline of case isolation and household member quarantining is used. We measure the impact of lockdown duration and start date on final infection attack sizes. We then apply a 3-month gradual exit strategy, immediately re-opening schools and easing workplace distancing measures, and compare this to long-term social distancing measures. Findings At baseline, we estimated 815 400 total infections (21.6% of the population). Early lockdown at 5 weeks with no exit strategy averted 18 500 (2.27% of baseline averted), 21 300 (2.61%) and 22 400 (2.75%) infections for 6, 8 and 9-week lockdown durations. Using the exit strategy averted a corresponding 114 700, 121 700 and 126 000 total cases, representing 12.07–13.06% of the total epidemic size under baseline. This diminishes to 9 900–11 300 for a late 8-week start time. Long-term social distancing at 6 and 8-week durations are viable but less effective. Interpretation Gradual release exit strategies are critical to maintain epidemic suppression under a new normal. We present final infection attack sizes assuming the ongoing importation of cases, which require preparation for a potential second epidemic wave due to ongoing epidemics elsewhere. Funding Singapore Ministry of Health, Singapore Population Health Improvement Centre.

61 citations

Journal ArticleDOI
TL;DR: This framework replicates the observed epidemic trajectories across most Southeast Asian countries, provides estimates of the effects of social distancing on the transmissibility of disease and can simulate epidemic histories conditional on changes in the degree of intervention scenarios and compliance within Southeast Asia.
Abstract: SARS-CoV-2 is a new pathogen responsible for the coronavirus disease 2019 (COVID-19) outbreak. Southeast Asia was the first region to be affected outside China, and although COVID-19 cases have been reported in all countries of Southeast Asia, both the policies and epidemic trajectories differ substantially, potentially due to marked differences in social distancing measures that have been implemented by governments in the region. This paper studies the across-country relationships between social distancing and each population's response to policy, the subsequent effects of these responses to the transmissibility and epidemic trajectories of SARS-CoV-2. The analysis couples COVID-19 case counts with real-time mobility data across Southeast Asia to estimate the effects of host population response to social distancing policy and the subsequent effects on the transmissibility and epidemic trajectories of SARS-CoV-2. A novel inference strategy for the time-varying reproduction number is developed to allow explicit inference of the effects of social distancing on the transmissibility of SARS-CoV-2 through a regression structure. This framework replicates the observed epidemic trajectories across most Southeast Asian countries, provides estimates of the effects of social distancing on the transmissibility of disease and can simulate epidemic histories conditional on changes in the degree of intervention scenarios and compliance within Southeast Asia.

19 citations


Cited by
More filters
Journal ArticleDOI
07 Jan 2021-Nature
TL;DR: A metapopulation susceptible–exposed–infectious–removed (SEIR) model that integrates fine-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in ten of the largest US metropolitan areas is introduced and correctly predicts higher infection rates among disadvantaged racial and socioeconomic groups.
Abstract: The coronavirus disease 2019 (COVID-19) pandemic markedly changed human mobility patterns, necessitating epidemiological models that can capture the effects of these changes in mobility on the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. Here we introduce a metapopulation susceptible-exposed-infectious-removed (SEIR) model that integrates fine-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in ten of the largest US metropolitan areas. Our mobility networks are derived from mobile phone data and map the hourly movements of 98 million people from neighbourhoods (or census block groups) to points of interest such as restaurants and religious establishments, connecting 56,945 census block groups to 552,758 points of interest with 5.4 billion hourly edges. We show that by integrating these networks, a relatively simple SEIR model can accurately fit the real case trajectory, despite substantial changes in the behaviour of the population over time. Our model predicts that a small minority of 'superspreader' points of interest account for a large majority of the infections, and that restricting the maximum occupancy at each point of interest is more effective than uniformly reducing mobility. Our model also correctly predicts higher infection rates among disadvantaged racial and socioeconomic groups2-8 solely as the result of differences in mobility: we find that disadvantaged groups have not been able to reduce their mobility as sharply, and that the points of interest that they visit are more crowded and are therefore associated with higher risk. By capturing who is infected at which locations, our model supports detailed analyses that can inform more-effective and equitable policy responses to COVID-19.

1,087 citations

Journal ArticleDOI
TL;DR: A rapid review on the effectiveness of quarantine during severe coronavirus outbreaks found that quarantine is important in reducing incidence and mortality during the COVID-19 pandemic.
Abstract: Background Coronavirus disease 2019 (COVID-19) is a rapidly emerging disease classified as a pandemic by the World Health Organization (WHO). To support the WHO with their recommendations on quarantine, we conducted a rapid review on the effectiveness of quarantine during severe coronavirus outbreaks. Objectives To assess the effects of quarantine (alone or in combination with other measures) of individuals who had contact with confirmed or suspected cases of COVID-19, who travelled from countries with a declared outbreak, or who live in regions with high disease transmission. Search methods An information specialist searched the Cochrane COVID-19 Study Register, and updated the search in PubMed, Ovid MEDLINE, WHO Global Index Medicus, Embase, and CINAHL on 23 June 2020. Selection criteria Cohort studies, case-control studies, time series, interrupted time series, case series, and mathematical modelling studies that assessed the effect of any type of quarantine to control COVID-19. We also included studies on SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome) as indirect evidence for the current coronavirus outbreak. Data collection and analysis Two review authors independently screened abstracts and titles in duplicate. Two review authors then independently screened all potentially relevant full-text publications. One review author extracted data, assessed the risk of bias and assessed the certainty of evidence with GRADE and a second review author checked the assessment. We used three different tools to assess risk of bias, depending on the study design: ROBINS-I for non-randomised studies of interventions, a tool provided by Cochrane Childhood Cancer for non-randomised, non-controlled studies, and recommendations from the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) for modelling studies. We rated the certainty of evidence for the four primary outcomes: incidence, onward transmission, mortality, and costs. Main results We included 51 studies; 4 observational studies and 28 modelling studies on COVID-19, one observational and one modelling study on MERS, three observational and 11 modelling studies on SARS, and three modelling studies on SARS and other infectious diseases. Because of the diverse methods of measurement and analysis across the outcomes of interest, we could not conduct a meta-analysis and undertook a narrative synthesis. We judged risk of bias to be moderate for 2/3 non-randomized studies of interventions (NRSIs) and serious for 1/3 NRSI. We rated risk of bias moderate for 4/5 non-controlled cohort studies, and serious for 1/5. We rated modelling studies as having no concerns for 13 studies, moderate concerns for 17 studies and major concerns for 13 studies. Quarantine for individuals who were in contact with a confirmed/suspected COVID-19 case in comparison to no quarantine Modelling studies consistently reported a benefit of the simulated quarantine measures, for example, quarantine of people exposed to confirmed or suspected cases may have averted 44% to 96% of incident cases and 31% to 76% of deaths compared to no measures based on different scenarios (incident cases: 6 modelling studies on COVID-19, 1 on SARS; mortality: 2 modelling studies on COVID-19, 1 on SARS, low-certainty evidence). Studies also indicated that there may be a reduction in the basic reproduction number ranging from 37% to 88% due to the implementation of quarantine (5 modelling studies on COVID-19, low-certainty evidence). Very low-certainty evidence suggests that the earlier quarantine measures are implemented, the greater the cost savings may be (2 modelling studies on SARS). Quarantine in combination with other measures to contain COVID-19 in comparison to other measures without quarantine or no measures When the models combined quarantine with other prevention and control measures, such as school closures, travel restrictions and social distancing, the models demonstrated that there may be a larger effect on the reduction of new cases, transmissions and deaths than measures without quarantine or no interventions (incident cases: 9 modelling studies on COVID-19; onward transmission: 5 modelling studies on COVID-19; mortality: 5 modelling studies on COVID-19, low-certainty evidence). Studies on SARS and MERS were consistent with findings from the studies on COVID-19. Quarantine for individuals travelling from a country with a declared COVID-19 outbreak compared to no quarantine Very low-certainty evidence indicated that the effect of quarantine of travellers from a country with a declared outbreak on reducing incidence and deaths may be small for SARS, but might be larger for COVID-19 (2 observational studies on COVID-19 and 2 observational studies on SARS). Authors' conclusions The current evidence is limited because most studies on COVID-19 are mathematical modelling studies that make different assumptions on important model parameters. Findings consistently indicate that quarantine is important in reducing incidence and mortality during the COVID-19 pandemic, although there is uncertainty over the magnitude of the effect. Early implementation of quarantine and combining quarantine with other public health measures is important to ensure effectiveness. In order to maintain the best possible balance of measures, decision makers must constantly monitor the outbreak and the impact of the measures implemented. This review was originally commissioned by the WHO and supported by Danube-University-Krems. The update was self-initiated by the review authors.

715 citations

Journal ArticleDOI
TL;DR: It is argued that mobile phone data, when used properly and carefully, represents a critical arsenal of tools for supporting public health actions across early-, middle-, and late-stage phases of the COVID-19 pandemic.
Abstract: The coronavirus 2019–2020 pandemic (COVID-19) poses unprecedented challenges for governments and societies around the world ( 1 ). Nonpharmaceutical interventions have proven to be critical for delaying and containing the COVID-19 pandemic ( 2 – 6 ). These include testing and tracing, bans on large gatherings, nonessential business and school and university closures, international and domestic mobility restrictions and physical isolation, and total lockdowns of regions and countries. Decision-making and evaluation or such interventions during all stages of the pandemic life cycle require specific, reliable, and timely data not only about infections but also about human behavior, especially mobility and physical copresence. We argue that mobile phone data, when used properly and carefully, represents a critical arsenal of tools for supporting public health actions across early-, middle-, and late-stage phases of the COVID-19 pandemic. Seminal work on human mobility has shown that aggregate and (pseudo-)anonymized mobile phone data can assist the modeling of the geographical spread of epidemics ( 7 – 11 ). Thus, researchers and governments have started to collaborate with private companies, most notably mobile network operators and location intelligence companies, to estimate the effectiveness of control measures in a number of countries, including Austria, Belgium, Chile, China, Germany, France, Italy, Spain, United Kingdom, and the United States ( 12 – 21 ). There is, however, little coordination or information exchange between these national or even regional initiatives ( 22 ). Although ad hoc mechanisms leveraging mobile phone data can be effectively (but not easily) developed at the local or national level, regional or even global collaborations seem to be much more difficult given the number of actors, the range of interests and priorities, the variety of legislations concerned, and the need to protect civil liberties. The global scale and spread of the COVID-19 pandemic highlight the need for a more harmonized or coordinated approach. In the …

487 citations

Journal ArticleDOI
TL;DR: The findings and propositions of this study suggest that COVID-19 will be the catalyst of several long- and short-term policy changes and requires the theoretical and empirical attention of researchers.

485 citations